Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Am J Physiol Heart Circ Physiol ; 323(5): H958-H974, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36149769

RESUMEN

Mechanical forces are translated into biochemical stimuli by mechanotransduction channels, such as the mechanically activated cation channel Piezo2. Lung Piezo2 expression has recently been shown to be restricted to endothelial cells. Hence, we aimed to investigate the role of Piezo2 in regulation of pulmonary vascular function and structure, as well as its contribution to development of pulmonary arterial hypertension (PAH). The expression of Piezo2 was significantly reduced in pulmonary microvascular endothelial cells (MVECs) from patients with PAH, in lung tissue from mice with a Bmpr2+/R899X knock-in mutation commonly found in patients with pulmonary hypertension, and in lung tissue of monocrotaline (MCT) and sugen-hypoxia-induced PH (SuHx) PAH rat models, as well as from a swine model with pulmonary vein banding. In MVECs, Piezo2 expression was reduced in response to abnormal shear stress, hypoxia, and TGFß stimulation. Functional studies in MVECs exposed to shear stress illustrated that siRNA-mediated Piezo2 knockdown impaired endothelial alignment, calcium influx, phosphorylation of AKT, and nitric oxide production. In addition, siPiezo2 reduced the expression of the endothelial marker PECAM-1 and increased the expression of vascular smooth muscle markers ACTA2, SM22a, and calponin. Thus, Piezo2 acts as a mechanotransduction channel in pulmonary MVECs, stimulating shear-induced production of nitric oxide and is essentially involved in preventing endothelial to mesenchymal transition. Its blunted expression in pulmonary hypertension could impair the vasodilator capacity and stimulate vascular remodeling, indicating that Piezo2 might be an interesting therapeutic target to attenuate progression of the disease.NEW & NOTEWORTHY The mechanosensory ion channel Piezo2 is exclusively expressed in lung microvascular endothelial cells (MVECs). Patient MVECs as well as animal models of pulmonary (arterial) hypertension showed lower expression of Piezo2 in the lung. Mechanistically, Piezo2 is required for calcium influx and NO production in response to shear stress, whereas stimuli known to induce endothelial to mesenchymal transition (EndMT) reduce Piezo2 expression in MVECs, and Piezo2 knockdown induces a gene and protein expression pattern consistent with EndMT.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Ratas , Ratones , Animales , Porcinos , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Células Endoteliales/metabolismo , Calcio/metabolismo , Óxido Nítrico/metabolismo , Mecanotransducción Celular , Células Cultivadas , Hipertensión Arterial Pulmonar/genética , Pulmón/metabolismo , Hipoxia , Arteria Pulmonar , Modelos Animales de Enfermedad , Canales Iónicos/genética , Canales Iónicos/metabolismo
2.
Int J Mol Sci ; 21(18)2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32937927

RESUMEN

Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) are pivotal regulators of extracellular matrix (ECM) composition and could, due to their dynamic activity, function as prognostic tools for fibrosis and cardiac function in left ventricular diastolic dysfunction (LVDD) and heart failure with preserved ejection fraction (HFpEF). We conducted a systematic review on experimental animal models of LVDD and HFpEF published in MEDLINE or Embase. Twenty-three studies were included with a total of 36 comparisons that reported established LVDD, quantification of cardiac fibrosis and cardiac MMP or TIMP expression or activity. LVDD/HFpEF models were divided based on underlying pathology: hemodynamic overload (17 comparisons), metabolic alteration (16 comparisons) or ageing (3 comparisons). Meta-analysis showed that echocardiographic parameters were not consistently altered in LVDD/HFpEF with invasive hemodynamic measurements better representing LVDD. Increased myocardial fibrotic area indicated comparable characteristics between hemodynamic and metabolic models. Regarding MMPs and TIMPs; MMP2 and MMP9 activity and protein and TIMP1 protein levels were mainly enhanced in hemodynamic models. In most cases only mRNA was assessed and there were no correlations between cardiac tissue and plasma levels. Female gender, a known risk factor for LVDD and HFpEF, was underrepresented. Novel studies should detail relevant model characteristics and focus on MMP and TIMP protein expression and activity to identify predictive circulating markers in cardiac ECM remodeling.


Asunto(s)
Matriz Extracelular/metabolismo , Insuficiencia Cardíaca/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Inhibidores Tisulares de Metaloproteinasas/metabolismo , Disfunción Ventricular Izquierda/metabolismo , Remodelación Ventricular/fisiología , Animales , Humanos , Función Ventricular Izquierda/fisiología
3.
J Cell Mol Med ; 23(10): 6666-6678, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31368189

RESUMEN

Obesity and hypertension are prevalent comorbidities in heart failure with preserved ejection fraction. To clarify if and how interaction between these comorbidities contributes to development of diastolic dysfunction, lean and obese ZSF1 rats were treated with deoxycorticosterone acetate implants and a high-salt diet (DS) to induce severe hypertension, or with placebo. In addition to echocardiographic, metabolic and hemodynamic analyses, immunohistochemistry and RNAseq were performed on left ventricular tissue. Obesity negatively affected cardiac output, led to an elevated E/e' ratio and mildly reduced ejection fraction. DS-induced hypertension did not affect cardiac output and minimally elevated E/e' ratio. Diastolic derangements in placebo-treated obese rats developed in absence of inflammation and fibrosis, yet in presence of oxidative stress and hypertrophic remodelling. In contrast, hypertension triggered apoptosis, inflammation and fibrosis, with limited synergy of the comorbidities observed for inflammation and fibrosis. Transcriptional data suggested that these comorbidities exerted opposite effects on mitochondrial function. In placebo-treated obese rats, genes involved in fatty acid metabolism were up-regulated, whereas DS-induced a down-regulation of genes involved in oxidative phosphorylation. Overall, limited interaction was observed between these comorbidities in development of diastolic dysfunction. Importantly, differences in obesity- and hypertension-induced cardiac remodelling emphasize the necessity for comorbidity-specific phenotypical characterization.


Asunto(s)
Insuficiencia Cardíaca/etiología , Hipertensión/complicaciones , Obesidad/complicaciones , Disfunción Ventricular Izquierda/etiología , Animales , Apoptosis/genética , Capilares/crecimiento & desarrollo , Acetato de Desoxicorticosterona , Progresión de la Enfermedad , Ácidos Grasos/metabolismo , Fibrosis/fisiopatología , Regulación de la Expresión Génica , Insuficiencia Cardíaca/metabolismo , Hipertensión/inducido químicamente , Hipertensión/metabolismo , Hipertensión/fisiopatología , Masculino , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Obesidad/genética , Obesidad/metabolismo , Obesidad/fisiopatología , Fosforilación Oxidativa/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , RNA-Seq , Ratas , Receptores de Leptina/deficiencia , Receptores de Leptina/genética , Factores de Riesgo , Volumen Sistólico/efectos de los fármacos , Volumen Sistólico/fisiología , Factor de Crecimiento Transformador beta1/metabolismo , Disfunción Ventricular Izquierda/genética , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/fisiopatología
4.
Angiogenesis ; 22(1): 75-93, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30097810

RESUMEN

Vascular endothelial (VE) cadherin is a key component of endothelial adherens junctions (AJs) and plays an important role in maintaining vascular integrity. Endocytosis of VE-cadherin regulates junctional strength and a decrease of surface VE-cadherin reduces vascular stability. However, disruption of AJs is also a requirement for vascular sprouting. Identifying novel regulators of endothelial endocytosis could enhance our understanding of angiogenesis. Here, we evaluated the angiogenic potential of (CKLF-like MARVEL transmembrane domain 4) CMTM4 and assessed in which molecular pathway CMTM4 is involved during angiogenesis. Using a 3D vascular assay composed of GFP-labeled HUVECs and dsRED-labeled pericytes, we demonstrated in vitro that siRNA-mediated CMTM4 silencing impairs vascular sprouting. In vivo, CMTM4 silencing by morpholino injection in zebrafish larvae inhibits intersomitic vessel growth. Intracellular staining revealed that CMTM4 colocalizes with Rab4+ and Rab7+ vesicles, both markers of the endocytic trafficking pathway. CMTM4 colocalizes with both membrane-bound and internalized VE-cadherin. Adenovirus-mediated CMTM4 overexpression enhances the endothelial endocytic pathway, in particular the rapid recycling pathway, shown by an increase in early endosomal antigen-1 positive (EEA1+), Rab4+, Rab11+ , and Rab7+ vesicles. CMTM4 overexpression enhances membrane-bound VE-cadherin internalization, whereas CMTM4 knockdown decreases internalization of VE-cadherin. CMTM4 overexpression promotes endothelial barrier function, shown by an increase in recovery of transendothelial electrical resistance (TEER) after thrombin stimulation. We have identified in this study a novel regulatory function for CMTM4 in angiogenesis. CMTM4 plays an important role in the turnover of membrane-bound VE-cadherin at AJs, mediating endothelial barrier function and controlling vascular sprouting.


Asunto(s)
Uniones Adherentes/metabolismo , Endocitosis , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Proteínas con Dominio MARVEL/metabolismo , Neovascularización Fisiológica , Uniones Adherentes/genética , Antígenos CD/genética , Cadherinas/genética , Silenciador del Gen , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos , Proteínas con Dominio MARVEL/genética
5.
J Am Soc Nephrol ; 29(2): 462-476, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29093029

RESUMEN

Genome-wide association studies (GWASs) have identified many genetic risk factors for CKD. However, linking common variants to genes that are causal for CKD etiology remains challenging. By adapting self-transcribing active regulatory region sequencing, we evaluated the effect of genetic variation on DNA regulatory elements (DREs). Variants in linkage with the CKD-associated single-nucleotide polymorphism rs11959928 were shown to affect DRE function, illustrating that genes regulated by DREs colocalizing with CKD-associated variation can be dysregulated and therefore, considered as CKD candidate genes. To identify target genes of these DREs, we used circular chromosome conformation capture (4C) sequencing on glomerular endothelial cells and renal tubular epithelial cells. Our 4C analyses revealed interactions of CKD-associated susceptibility regions with the transcriptional start sites of 304 target genes. Overlap with multiple databases confirmed that many of these target genes are involved in kidney homeostasis. Expression quantitative trait loci analysis revealed that mRNA levels of many target genes are genotype dependent. Pathway analyses showed that target genes were enriched in processes crucial for renal function, identifying dysregulated geranylgeranyl diphosphate biosynthesis as a potential disease mechanism. Overall, our data annotated multiple genes to previously reported CKD-associated single-nucleotide polymorphisms and provided evidence for interaction between these loci and target genes. This pipeline provides a novel technique for hypothesis generation and complements classic GWAS interpretation. Future studies are required to specify the implications of our dataset and further reveal the complex roles that common variants have in complex diseases, such as CKD.


Asunto(s)
Cromatina/química , ADN/química , Conformación de Ácido Nucleico , Insuficiencia Renal Crónica/genética , Animales , Vías Biosintéticas/genética , Células Cultivadas , Bases de Datos Genéticas , Células Endoteliales , Predisposición Genética a la Enfermedad/genética , Genotipo , Homeostasis/genética , Humanos , Túbulos Renales , Ratones , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , ARN Mensajero/metabolismo , Análisis de Secuencia de ADN/métodos
6.
Angiogenesis ; 21(4): 805-821, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29845518

RESUMEN

AIMS: Formation of a functional vascular system is essential and its formation is a highly regulated process initiated during embryogenesis, which continues to play important roles throughout life in both health and disease. In previous studies, Fzd5 was shown to be critically involved in this process and here we investigated the molecular mechanism by which endothelial loss of this receptor attenuates angiogenesis. METHODS AND RESULTS: Using short interference RNA-mediated loss-of-function assays, the function and mechanism of signaling via Fzd5 was studied in human endothelial cells (ECs). Our findings indicate that Fzd5 signaling promotes neovessel formation in vitro in a collagen matrix-based 3D co-culture of primary vascular cells. Silencing of Fzd5 reduced EC proliferation, as a result of G0/G1 cell cycle arrest, and decreased cell migration. Furthermore, Fzd5 knockdown resulted in enhanced expression of the factors Angpt2 and Flt1, which are mainly known for their destabilizing effects on the vasculature. In Fzd5-silenced ECs, Angpt2 and Flt1 upregulation was induced by enhanced PKC signaling, without the involvement of canonical Wnt signaling, non-canonical Wnt/Ca2+-mediated activation of NFAT, and non-canonical Wnt/PCP-mediated activation of JNK. We demonstrated that PKC-induced transcription of Angpt2 and Flt1 involved the transcription factor Ets1. CONCLUSIONS: The current study demonstrates a pro-angiogenic role of Fzd5, which was shown to be involved in endothelial tubule formation, cell cycle progression and migration, and partly does so by repression of PKC/Ets1-mediated transcription of Flt1 and Angpt2.


Asunto(s)
Angiopoyetina 1/metabolismo , Receptores Frizzled/deficiencia , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Neovascularización Fisiológica , Proteína Quinasa C/metabolismo , Proteína Proto-Oncogénica c-ets-1/metabolismo , Transcripción Genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Vía de Señalización Wnt , Angiopoyetina 1/genética , Proliferación Celular , Técnicas de Silenciamiento del Gen , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos , Proteína Quinasa C/genética , Proteína Proto-Oncogénica c-ets-1/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética
7.
J Cell Mol Med ; 21(12): 3277-3287, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28608983

RESUMEN

The use of doxorubicin (DOXO) as a chemotherapeutic drug has been hampered by cardiotoxicity leading to cardiomyopathy and heart failure. Folic acid (FA) is a modulator of endothelial nitric oxide (NO) synthase (eNOS), which in turn is an important player in diseases associated with NO insufficiency or NOS dysregulation, such as pressure overload and myocardial infarction. However, the role of FA in DOXO-induced cardiomyopathy is poorly understood. The aim of this study was to test the hypothesis that FA prevents DOXO-induced cardiomyopathy by modulating eNOS and mitochondrial structure and function. Male C57BL/6 mice were randomized to a single dose of DOXO (20 mg/kg intraperitoneal) or sham. FA supplementation (10 mg/day per oral) was started 7 days before DOXO injection and continued thereafter. DOXO resulted in 70% mortality after 10 days, with the surviving mice demonstrating a 30% reduction in stroke volume compared with sham groups. Pre-treatment with FA reduced mortality to 45% and improved stroke volume (both P < 0.05 versus DOXO). These effects of FA were underlain by blunting of DOXO-induced cardiomyocyte atrophy, apoptosis, interstitial fibrosis and impairment of mitochondrial function. Mechanistically, pre-treatment with FA prevented DOXO-induced increases in superoxide anion production by reducing the eNOS monomer:dimer ratio and eNOS S-glutathionylation, and attenuated DOXO-induced decreases in superoxide dismutase, eNOS phosphorylation and NO production. Enhancing eNOS function by restoring its coupling and subsequently reducing oxidative stress with FA may be a novel therapeutic approach to attenuate DOXO-induced cardiomyopathy.


Asunto(s)
Antioxidantes/farmacología , Cardiomiopatías/prevención & control , Cardiotónicos/farmacología , Cardiotoxicidad/prevención & control , Doxorrubicina/antagonistas & inhibidores , Doxorrubicina/toxicidad , Ácido Fólico/farmacología , Animales , Antibióticos Antineoplásicos/toxicidad , Apoptosis/efectos de los fármacos , Cardiomiopatías/inducido químicamente , Cardiomiopatías/enzimología , Cardiomiopatías/mortalidad , Cardiotoxicidad/enzimología , Cardiotoxicidad/mortalidad , Cardiotoxicidad/patología , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/enzimología , Mitocondrias/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fosforilación , Volumen Sistólico/efectos de los fármacos , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxidos/antagonistas & inhibidores , Superóxidos/metabolismo , Análisis de Supervivencia
8.
J Cell Mol Med ; 19(8): 1994-2005, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25945589

RESUMEN

Arteriogenesis is a complicated process induced by increased local shear-and radial wall-stress, leading to an increase in arterial diameter. This process is enhanced by growth factors secreted by both inflammatory and endothelial cells in response to physical stress. Although therapeutic promotion of arteriogenesis is of great interest for ischaemic diseases, little is known about the modulation of the signalling cascades via microRNAs. We observed that miR-132/212 expression was significantly upregulated after occlusion of the femoral artery. miR-132/212 knockout (KO) mice display a slower perfusion recovery after hind-limb ischaemia compared to wildtype (WT) mice. Immunohistochemical analysis demonstrates a clear trend towards smaller collateral arteries in KO mice. Although Ex vivo aortic ring assays score similar number of branches in miR-132/212 KO mice compared to WT, it can be stimulated with exogenous miR-132, a dominant member of the miR-132/212 family. Moreover, in in vitro pericyte-endothelial co-culture cell assays, overexpression of miR-132 and mir-212 in endothelial cells results in enhanced vascularization, as shown by an increase in tubular structures and junctions. Our results suggested that miR-132/212 may exert their effects by enhancing the Ras-Mitogen-activated protein kinases MAPK signalling pathway through direct inhibition of Rasa1, and Spred1. The miR-132/212 cluster promotes arteriogenesis by modulating Ras-MAPK signalling via direct targeting of its inhibitors Rasa1 and Spred1.


Asunto(s)
Miembro Posterior/irrigación sanguínea , Isquemia/genética , MicroARNs/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Morfogénesis , Proteínas ras/metabolismo , Animales , Técnicas de Silenciamiento del Gen , Células HEK293 , Miembro Posterior/efectos de los fármacos , Miembro Posterior/patología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Técnicas In Vitro , Péptidos y Proteínas de Señalización Intercelular/farmacología , Isquemia/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , Morfogénesis/efectos de los fármacos , Neovascularización Fisiológica/efectos de los fármacos , Fosforilación/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
9.
Arterioscler Thromb Vasc Biol ; 34(3): 594-602, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24407030

RESUMEN

OBJECTIVE: In arteriogenesis, pre-existing anastomoses undergo enlargement to restore blood flow in ischemic tissues. Chemokine (C-X-C motif) ligand 10 (CXCL10) is secreted after Toll-like receptor activation. Toll-like receptors are involved in arteriogenesis; however, the role of CXCL10 is still unclear. In this study, we investigated the role for CXCL10 in a murine hindlimb ischemia model. APPROACH AND RESULTS: Unilateral femoral artery ligation was performed in wild-type (WT) and CXCL10(-/-) knockout (KO) mice and perfusion recovery was measured using laser-Doppler perfusion analysis. Perfusion recovery was significantly lower in KO mice compared with WT at days 4 and 7 after surgery (KO versus WT: 28±5% versus 81±13% at day 4; P=0.003 and 57±12% versus 107±8% at day 7; P=0.003). Vessel measurements of α-smooth muscle actin-positive vessels revealed increasing numbers in time after surgery, which was significantly higher in WT when compared with that in KO. Furthermore, α-smooth muscle actin-positive vessels were significantly larger in WT when compared with those in KO at day 7 (wall thickness, P<0.001; lumen area, P=0.003). Local inflammation was assessed in hindlimb muscles, but this did not differ between WT and KO. Chimerization experiments analyzing perfusion recovery and histology revealed an equal contribution for bone marrow-derived and circulating CXCL10. Migration assays showed a stimulating role for both intrinsic and extrinsic CXCL10 in vascular smooth muscle cell migration. CONCLUSIONS: CXCL10 plays a causal role in arteriogenesis. Bone marrow-derived CXCL10 and tissue-derived CXCL10 play a critical role in accelerating perfusion recovery after arterial occlusion in mice probably by promoting vascular smooth muscle cell recruitment and maturation of pre-existing anastomoses.


Asunto(s)
Quimiocina CXCL10/deficiencia , Circulación Colateral/fisiología , Neovascularización Fisiológica/fisiología , Daño por Reperfusión/fisiopatología , Animales , Aorta/citología , Médula Ósea/metabolismo , Células Cultivadas , Quimiocina CXCL10/antagonistas & inhibidores , Quimiocina CXCL10/sangre , Quimiocina CXCL10/genética , Quimiocina CXCL10/farmacología , Quimiocina CXCL10/fisiología , Femenino , Arteria Femoral , Miembro Posterior/irrigación sanguínea , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inflamación , Isquemia/fisiopatología , Flujometría por Láser-Doppler , Ligadura , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/farmacología , Quimera por Radiación , Proteínas Recombinantes/farmacología
10.
Cell Rep ; 38(1): 110189, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34986347

RESUMEN

Fibrosis is a major cause of mortality worldwide, characterized by myofibroblast activation and excessive extracellular matrix deposition. Systemic sclerosis is a prototypic fibrotic disease in which CXCL4 is increased and strongly correlates with skin and lung fibrosis. Here we aim to elucidate the role of CXCL4 in fibrosis development. CXCL4 levels are increased in multiple inflammatory and fibrotic mouse models, and, using CXCL4-deficient mice, we demonstrate the essential role of CXCL4 in promoting fibrotic events in the skin, lungs, and heart. Overexpressing human CXCL4 in mice aggravates, whereas blocking CXCL4 reduces, bleomycin-induced fibrosis. Single-cell ligand-receptor analysis predicts CXCL4 to affect endothelial cells and fibroblasts. In vitro, we confirm that CXCL4 directly induces myofibroblast differentiation and collagen synthesis in different precursor cells, including endothelial cells, by stimulating endothelial-to-mesenchymal transition. Our findings identify a pivotal role of CXCL4 in fibrosis, further substantiating the potential role of neutralizing CXCL4 as a therapeutic strategy.


Asunto(s)
Matriz Extracelular/patología , Miofibroblastos/metabolismo , Factor Plaquetario 4/metabolismo , Fibrosis Pulmonar/patología , Esclerodermia Sistémica/patología , Animales , Bleomicina/toxicidad , Línea Celular , Colágeno/biosíntesis , Modelos Animales de Enfermedad , Células Endoteliales/citología , Células Endoteliales/metabolismo , Transición Epitelial-Mesenquimal/fisiología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Pulmón/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Miofibroblastos/citología , Pericitos/metabolismo , Factor Plaquetario 4/genética , Células del Estroma/citología , Células del Estroma/metabolismo
11.
Front Physiol ; 12: 771960, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35002759

RESUMEN

The coronary microvasculature plays a key role in regulating the tight coupling between myocardial perfusion and myocardial oxygen demand across a wide range of cardiac activity. Short-term regulation of coronary blood flow in response to metabolic stimuli is achieved via adjustment of vascular diameter in different segments of the microvasculature in conjunction with mechanical forces eliciting myogenic and flow-mediated vasodilation. In contrast, chronic adjustments in flow regulation also involve microvascular structural modifications, termed remodeling. Vascular remodeling encompasses changes in microvascular diameter and/or density being largely modulated by mechanical forces acting on the endothelium and vascular smooth muscle cells. Whereas in recent years, substantial knowledge has been gathered regarding the molecular mechanisms controlling microvascular tone and how these are altered in various diseases, the structural adaptations in response to pathologic situations are less well understood. In this article, we review the factors involved in coronary microvascular functional and structural alterations in obstructive and non-obstructive coronary artery disease and the molecular mechanisms involved therein with a focus on mechanobiology. Cardiovascular risk factors including metabolic dysregulation, hypercholesterolemia, hypertension and aging have been shown to induce microvascular (endothelial) dysfunction and vascular remodeling. Additionally, alterations in biomechanical forces produced by a coronary artery stenosis are associated with microvascular functional and structural alterations. Future studies should be directed at further unraveling the mechanisms underlying the coronary microvascular functional and structural alterations in disease; a deeper understanding of these mechanisms is critical for the identification of potential new targets for the treatment of ischemic heart disease.

12.
Cells ; 9(4)2020 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-32325871

RESUMEN

A common feature of tumorigenesis is the upregulation of angiogenesis pathways in order to supply nutrients via the blood for the growing tumor. Understanding how cells promote angiogenesis and how to control these processes pharmaceutically are of great clinical interest. Clear cell renal cell carcinoma (ccRCC) is the most common form of sporadic and inherited kidney cancer which is associated with excess neovascularization. ccRCC is highly associated with biallelic mutations in the von Hippel-Lindau (VHL) tumor suppressor gene. Although upregulation of the miR-212/132 family and disturbed VHL signaling have both been linked with angiogenesis, no evidence of a possible connection between the two has yet been made. We show that miRNA-212/132 levels are increased after loss of functional pVHL, the protein product of the VHL gene, in vivo and in vitro. Furthermore, we show that blocking miRNA-212/132 with anti-miRs can significantly alleviate the excessive vascular branching phenotype characteristic of vhl-/- mutant zebrafish. Moreover, using human umbilical vascular endothelial cells (HUVECs) and an endothelial cell/pericyte coculture system, we observed that VHL knockdown promotes endothelial cells neovascularization capacity in vitro, an effect which can be inhibited by anti-miR-212/132 treatment. Taken together, our results demonstrate an important role for miRNA-212/132 in angiogenesis induced by loss of VHL. Intriguingly, this also presents a possibility for the pharmaceutical manipulation of angiogenesis by modulating levels of MiR212/132.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/genética , MicroARNs/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Inductores de la Angiogénesis/metabolismo , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Células Endoteliales/metabolismo , Humanos , Riñón/patología , Neoplasias Renales/genética , Neoplasias Renales/patología , Regulación hacia Arriba
13.
PLoS One ; 15(5): e0232399, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32374790

RESUMEN

Heart failure with a preserved ejection fraction (HFpEF) is associated with multiple comorbidities, such as old age, hypertension, type 2 diabetes and obesity and is more prevalent in females. Although the male obese ZSF1 rat has been proposed as a suitable model to study the development of diastolic dysfunction and early HFpEF, studies in female animals have not been performed yet. Therefore, we aimed to characterize the cardiac phenotype in female obese ZSF1 rats and their lean counterparts. Additionally, we aimed to investigate whether differences exist in disease progression in obese male and female ZSF1 rats. Therefore, male and female ZSF1 rats, lean as well as obese (N = 6-9/subgroup), were used. Every two weeks, from 12 to 26 weeks of age, systolic blood pressure and echocardiographic measurements were performed, and venous blood was sampled. Female obese ZSF1 rats, as compared to female lean ZSF1 rats, developed diastolic dysfunction with cardiac hypertrophy and fibrosis in the presence of severe dyslipidemia, increased plasma growth differentiation factor 15 and mild hypertension, and preservation of systolic function. Although obese female ZSF1 rats did not develop hyperglycemia, their diastolic dysfunction was as severe as in the obese males. Taken together, the results from the present study suggest that the female obese ZSF1 rat is a relevant animal model for HFpEF with multiple comorbidities, suitable for investigating novel therapeutic interventions.


Asunto(s)
Insuficiencia Cardíaca/etiología , Obesidad/complicaciones , Animales , Presión Sanguínea/fisiología , Colágeno/metabolismo , Diástole/fisiología , Modelos Animales de Enfermedad , Ecocardiografía , Femenino , Insuficiencia Cardíaca/diagnóstico por imagen , Insuficiencia Cardíaca/fisiopatología , Masculino , Síndrome Metabólico/complicaciones , Miocardio/metabolismo , Miocardio/patología , Ratas , Ratas Endogámicas SHR , Ratas Zucker , Caracteres Sexuales , Volumen Sistólico/fisiología , Delgadez/fisiopatología , Remodelación Ventricular/fisiología
14.
Lab Chip ; 20(10): 1827-1844, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32330215

RESUMEN

Microfluidic organ-on-a-chip designs are used to mimic human tissues, including the vasculature. Here we present a novel microfluidic device that allows the interaction of endothelial cells (ECs) with pericytes and the extracellular matrix (ECM) in full bio-matrix encased 3D vessel structures (neovessels) that can be subjected to continuous, unidirectional flow and perfusion with circulating immune cells. We designed a polydimethylsiloxane (PDMS) device with a reservoir for a 3D fibrinogen gel with pericytes. Open channels were created for ECs to form a monolayer. Controlled, continuous, and unidirectional flow was introduced via a pump system while the design facilitated 3D confocal imaging. In this vessel-on-a-chip system, ECs interact with pericytes to create a human cell derived blood vessel which maintains a perfusable lumen for up to 7 days. Dextran diffusion verified endothelial barrier function while demonstrating the beneficial role of supporting pericytes. Increased permeability after thrombin stimulation showed the capacity of the neovessels to show natural vascular response. Perfusion of neovessels with circulating THP-1 cells demonstrated this system as a valuable platform for assessing interaction between the endothelium and immune cells in response to TNFα. In conclusion: we created a novel vascular microfluidic device that facilitates the fabrication of an array of parallel soft-channel structures in ECM gel that develop into biologically functional neovessels without hard-scaffold support. This model provides a unique tool to conduct live in vitro imaging of the human vasculature during perfusion with circulating cells to mimic (disease) environments in a highly systematic but freely configurable manner.


Asunto(s)
Células Endoteliales , Microfluídica , Comunicación Celular , Matriz Extracelular , Humanos , Dispositivos Laboratorio en un Chip
15.
Sci Rep ; 9(1): 15586, 2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31666598

RESUMEN

Microvascular homeostasis is strictly regulated, requiring close interaction between endothelial cells and pericytes. Here, we aimed to improve our understanding of how microvascular crosstalk affects pericytes. Human-derived pericytes, cultured in absence, or presence of human endothelial cells, were studied by RNA sequencing. Compared with mono-cultured pericytes, a total of 6704 genes were differentially expressed in co-cultured pericytes. Direct endothelial contact induced transcriptome profiles associated with pericyte maturation, suppression of extracellular matrix production, proliferation, and morphological adaptation. In vitro studies confirmed enhanced pericyte proliferation mediated by endothelial-derived PDGFB and pericyte-derived HB-EGF and FGF2. Endothelial-induced PLXNA2 and ACTR3 upregulation also triggered pericyte morphological adaptation. Pathway analysis predicted a key role for TGFß signaling in endothelial-induced pericyte differentiation, whereas the effect of signaling via gap- and adherens junctions was limited. We demonstrate that endothelial cells have a major impact on the transcriptional profile of pericytes, regulating endothelial-induced maturation, proliferation, and suppression of ECM production.


Asunto(s)
Diferenciación Celular/genética , Células Endoteliales/citología , Perfilación de la Expresión Génica , Microvasos/citología , Pericitos/citología , Uniones Adherentes/metabolismo , Matriz Extracelular/metabolismo , Uniones Comunicantes/metabolismo , Humanos , Transducción de Señal/genética
16.
Eye (Lond) ; 32(8): 1380-1386, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29743587

RESUMEN

PURPOSE: This study is aimed to adapt a three-dimensional (3-D) in vitro angiogenesis model to the ophthalmology field using retinal endothelial cells (REC). This system is applied to assess the angiogenic capacity of aqueous humor (AH) from patients with ocular disorders, and to test the effect of VEGF inhibitor (aflibercept) on induced angiogenesis. METHODS: Human REC and umbilical vein endothelial cells (HUVEC) and pericytes were co-cultured in a gel matrix with 25-200 ng/ml pro-angiogenic growth factors (GF). AH from patients with cataract, glaucoma or proliferative diabetic retinopathy (PDR) was tested in the REC-pericyte co-culture. Aflibercept was then introduced to the co-culture containing PDR AH. The surface area and total tubule length were measured using Image J. RESULTS: Optimal GF concentrations at 200 ng/ml induced angiogenesis by REC as well as HUVEC, while vessel formation by both cell types was strongly reduced using 25-50 ng/ml GF. Addition of AH from the PDR patient triggered tubule formation by REC at low GF concentration. Aflibercept, however, significantly inhibited angiogenesis induced by PDR AH, but showed no significant influence on other conditions. CONCLUSION: REC can be applied efficiently in the 3-D in vitro angiogenesis model as a diagnostic tool to assess the AH angiogenic status and to validate new anti-angiogenic therapeutic compounds prior to clinical trial.


Asunto(s)
Endotelio Vascular/patología , Imagenología Tridimensional/métodos , Receptores de Factores de Crecimiento Endotelial Vascular/administración & dosificación , Proteínas Recombinantes de Fusión/administración & dosificación , Retina/patología , Neovascularización Retiniana/diagnóstico por imagen , Cuerpo Vítreo/patología , Células Cultivadas , Humanos , Inyecciones Intravítreas , Neovascularización Retiniana/tratamiento farmacológico
17.
Cardiovasc Res ; 113(14): 1776-1788, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29016873

RESUMEN

AIMS: The formation of cell-cell and cell-extra cellular matrix (ECM) contacts by endothelial cells (ECs) is crucial for the stability and integrity of a vascular network. We previously identified cingulin-like 1 (Cgnl1) in a transcriptomic screen for new angiogenic modulators. Here we aim to study the function of the cell-cell junction associated protein Cgnl1 during vessel formation. METHODS AND RESULTS: Unlike family member cingulin, Cgnl1 expression is enriched in ECs during vascular growth. Cgnl1 is important for the formation of multicellular tubule structures, as shown in vitro using loss-of function assays in a 3D matrix co-culture system that uses primary human ECs and supporting mural cells. Further studies revealed that Cgnl1 regulates vascular growth by promoting Ve-cadherin association with the actin cytoskeleton, thereby stabilizing adherens junctions. Cgnl1 also regulates focal adhesion assembly in response to ECM contact, promoting vinculin and paxillin recruitment and focal adhesion kinase signalling. In vivo, we demonstrate in a postnatal retinal vascular development model in mice that Cgnl1 function is crucial for sustaining neovascular growth and stability. CONCLUSIONS: Our data demonstrate a functional relevance for Cgnl1 as a defining factor in new vessel formation both in vitro and in vivo.


Asunto(s)
Uniones Adherentes/metabolismo , Proteínas del Citoesqueleto/metabolismo , Células Endoteliales/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas de la Membrana/metabolismo , Neovascularización Fisiológica/fisiología , Citoesqueleto de Actina/metabolismo , Animales , Adhesión Celular/fisiología , Proteínas del Citoesqueleto/genética , Endotelio Vascular/metabolismo , Humanos , Uniones Intercelulares/metabolismo , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL
18.
Circ Cardiovasc Genet ; 10(2)2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28320757

RESUMEN

BACKGROUND: As genome-wide association efforts, such as CARDIoGRAM and METASTROKE, are ongoing to reveal susceptibility loci for their underlying disease-atherosclerotic disease-identification of candidate genes explaining the associations of these loci has proven the main challenge. Many disease susceptibility loci colocalize with DNA regulatory elements, which influence gene expression through chromatin interactions. Therefore, the target genes of these regulatory elements can be considered candidate genes. Applying these biological principles, we used an alternative approach to annotate susceptibility loci and identify candidate genes for human atherosclerotic disease based on circular chromosome conformation capture followed by sequencing. METHODS AND RESULTS: In human monocytes and coronary endothelial cells, we generated 63 chromatin interaction data sets for 37 active DNA regulatory elements that colocalize with known susceptibility loci for coronary artery disease (CARDIoGRAMplusC4D) and large artery stroke (METASTROKE). By circular chromosome conformation capture followed by sequencing, we identified a physical 3-dimensional interaction with 326 candidate genes expressed in at least 1 of these cell types, of which 294 have not been reported before. We highlight 16 genes based on expression quantitative trait loci. CONCLUSIONS: Our findings provide additional candidate-gene annotation for 37 disease susceptibility loci for human atherosclerotic disease that are of potential interest to better understand the complex pathophysiology of cardiovascular diseases.


Asunto(s)
Aterosclerosis/genética , Cromatina/genética , Sitios Genéticos , Predisposición Genética a la Enfermedad , Anotación de Secuencia Molecular , Aterosclerosis/metabolismo , Aterosclerosis/patología , Línea Celular , Cromatina/metabolismo , Células Endoteliales/metabolismo , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Monocitos/metabolismo
19.
Cardiovasc Res ; 110(1): 129-39, 2016 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-26822228

RESUMEN

AIMS: Impairment of the endothelial barrier leads to microvascular breakdown in cardiovascular disease and is involved in intraplaque haemorrhaging and the progression of advanced atherosclerotic lesions that are vulnerable to rupture. The exact mechanism that regulates vascular integrity requires further definition. Using a microarray screen for angiogenesis-associated genes during murine embryogenesis, we identified thrombospondin type I domain 1 (THSD1) as a new putative angiopotent factor with unknown biological function. We sought to characterize the role of THSD1 in endothelial cells during vascular development and cardiovascular disease. METHODS AND RESULTS: Functional knockdown of Thsd1 in zebrafish embryos and in a murine retina vascularization model induced severe haemorrhaging without affecting neovascular growth. In human carotid endarterectomy specimens, THSD1 expression by endothelial cells was detected in advanced atherosclerotic lesions with intraplaque haemorrhaging, but was absent in stable lesions, implying involvement of THSD1 in neovascular bleeding. In vitro, stimulation with pro-atherogenic factors (3% O2 and TNFα) decreased THSD1 expression in human endothelial cells, whereas stimulation with an anti-atherogenic factor (IL10) showed opposite effect. Therapeutic evaluation in a murine advanced atherosclerosis model showed that Thsd1 overexpression decreased plaque vulnerability by attenuating intraplaque vascular leakage, subsequently reducing macrophage accumulation and necrotic core size. Mechanistic studies in human endothelial cells demonstrated that THSD1 activates FAK-PI3K, leading to Rac1-mediated actin cytoskeleton regulation of adherens junctions and focal adhesion assembly. CONCLUSION: THSD1 is a new regulator of endothelial barrier function during vascular development and protects intraplaque microvessels against haemorrhaging in advanced atherosclerotic lesions.


Asunto(s)
Aterosclerosis/metabolismo , Células Endoteliales/metabolismo , Microvasos/metabolismo , Neovascularización Patológica/metabolismo , Trombospondinas/metabolismo , Animales , Apolipoproteínas E/deficiencia , Apolipoproteínas E/metabolismo , Enfermedades de las Arterias Carótidas/metabolismo , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Fosfatidilinositol 3-Quinasas/metabolismo , Placa Aterosclerótica/patología , Trombospondina 1/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda