RESUMEN
BACKGROUND: The VPS50 protein functions in synaptic and dense core vesicle acidification, and perturbations of VPS50 function produce behavioral changes in Caenorhabditis elegans. Patients with mutations in VPS50 show severe developmental delay and intellectual disability, characteristics that have been associated with autism spectrum disorders (ASDs). The mechanisms that link VPS50 mutations to ASD are unknown. RESULTS: To examine the role of VPS50 in mammalian brain function and behavior, we used the CRISPR/Cas9 system to generate knockouts of VPS50 in both cultured murine cortical neurons and living mice. In cultured neurons, KO of VPS50 did not affect the number of synaptic vesicles but did cause mislocalization of the V-ATPase V1 domain pump and impaired synaptic activity, likely as a consequence of defects in vesicle acidification and vesicle content. In mice, mosaic KO of VPS50 in the hippocampus altered synaptic transmission and plasticity and generated robust cognitive impairments. CONCLUSIONS: We propose that VPS50 functions as an accessory protein to aid the recruitment of the V-ATPase V1 domain to synaptic vesicles and in that way plays a crucial role in controlling synaptic vesicle acidification. Understanding the mechanisms controlling behaviors and synaptic function in ASD-associated mutations is pivotal for the development of targeted interventions, which may open new avenues for therapeutic strategies aimed at ASD and related conditions.
Asunto(s)
Ratones Noqueados , Vesículas Sinápticas , Animales , Ratones , Conducta Animal/fisiología , Encéfalo/metabolismo , Neuronas/metabolismo , Neuronas/fisiología , Sinapsis/metabolismo , Sinapsis/fisiología , Transmisión Sináptica , Vesículas Sinápticas/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , ATPasas de Translocación de Protón Vacuolares/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismoRESUMEN
Optical coherence tomography (OCT) has proved to be a powerful tool for the detection of microstructure in tissue. Label-free tissue differentiation on a micron scale is a promising and powerful technique for segmentation. This Letter describes a technique using a dual-wavelength OCT system to image the eye. We measure the walk-off between interfaces in A-scans, taken at two different wavelengths, to calculate the average group velocity dispersion parameter of each segment of the eye. We present measurements of the dispersion of the cornea and the aqueous humour in rat eyes.
RESUMEN
LTR-retrotransposons are transposable elements characterized by the presence of long terminal repeats (LTRs) directly flanking an internal coding region. They share genome organization and replication strategies with retroviruses. Steamer-like Element-1 (MchSLE-1) is an LTR-retrotransposon identified in the genome of the Chilean blue mussel Mytilus chilensis. MchSLE-1 is transcribed; however, whether its RNA is also translated and the mechanism underlying such translation remain to be elucidated. Here, we characterize the MchSLE-1 translation mechanism. We found that the MchSLE-1 5' and 3'LTRs command transcription of sense and antisense RNAs, respectively. Using luciferase reporters commanded by the untranslated regions (UTRs) of MchSLE-1, we found that in vitro 5'UTR sense is unable to initiate translation, whereas the antisense 5'UTR initiates translation even when the eIF4E-eIF4G interaction was disrupted, suggesting the presence of an internal ribosomal entry site (IRES). The antisense 5'UTR IRES activity was tested using bicistronic reporters. The antisense 5'UTR has IRES activity only when the mRNA is transcribed in the nucleus, suggesting that nuclear RNA-binding proteins are required to modulate its activity. Indeed, heterogeneous nuclear ribonucleoprotein K (hnRNPK) was identified as an IRES trans-acting factor (ITAF) of the MchSLE-1 IRES. To our knowledge, this is the first report describing an IRES in an antisense mRNA derived from a mussel LTR-retrotransposon.
Asunto(s)
Sitios Internos de Entrada al Ribosoma , Mytilus , Animales , ARN Mensajero/genética , ARN Mensajero/metabolismo , Sitios Internos de Entrada al Ribosoma/genética , Retroelementos/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo K/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo K/metabolismo , Regiones no Traducidas 5' , Mytilus/genética , Mytilus/metabolismo , Biosíntesis de ProteínasRESUMEN
Autism spectrum disorders (ASD) are complex neurodevelopmental conditions characterized by impairments in social communication, repetitive behaviors, and restricted interests. Epigenetic modifications serve as critical regulators of gene expression playing a crucial role in controlling brain function and behavior. Lysine (K)-specific demethylase 6B (KDM6B), a stress-inducible H3K27me3 demethylase, has emerged as one of the highest ASD risk genes, but the precise effects of KDM6B mutations on neuronal activity and behavioral function remain elusive. Here we show the impact of KDM6B mosaic brain knockout on the manifestation of different autistic-like phenotypes including repetitive behaviors, social interaction, and significant cognitive deficits. Moreover, KDM6B mosaic knockout display abnormalities in hippocampal excitatory synaptic transmission decreasing NMDA receptor mediated synaptic transmission and plasticity. Understanding the intricate interplay between epigenetic modifications and neuronal function may provide novel insights into the pathophysiology of ASD and potentially inform the development of targeted therapeutic interventions.
Asunto(s)
Trastorno del Espectro Autista , Histona Demetilasas con Dominio de Jumonji , Ratones Noqueados , Transmisión Sináptica , Animales , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Transmisión Sináptica/genética , Trastorno del Espectro Autista/genética , Ratones , Encéfalo/metabolismo , Plasticidad Neuronal/genética , Conducta Animal , Hipocampo/metabolismo , Epigénesis Genética , Masculino , Sinapsis/metabolismoRESUMEN
Neurodevelopmental disorders have been associated with genetic mutations that affect cellular function, including chromatin regulation and epigenetic modifications. Recent studies in humans have identified mutations in KMT2C, an enzyme responsible for modifying histone tails and depositing H3K4me1 and H3K4me3, as being associated with Kleefstra syndrome 2 and autism spectrum disorder (ASD). However, the precise role of KMT2C mutations in brain disorders remains poorly understood. Here we employed CRISPR/Cas9 gene editing to analyze the effects of KMT2C brain specific knockout on animal behavior. Knocking out KMT2C expression in cortical neurons and the mouse brain resulted in decreased KMT2C levels. Importantly, KMT2C brain specific knockout animals exhibited repetitive behaviors, social deficits, and intellectual disability resembling ASD. Our findings shed light on the involvement of KMT2C in neurodevelopmental processes and establish a valuable model for elucidating the cellular and molecular mechanisms underlying KMT2C mutations and their relationship to Kleefstra syndrome 2 and ASD.
RESUMEN
VPS50, is an accessory protein, involved in the synaptic and dense core vesicle acidification and its alterations produce behavioral changes in C.elegans. Here, we produce the mosaic knock out (mKO) of VPS50 using CRISPR/Cas9 system in both cortical cultured neurons and whole animals to evaluate the effect of VPS50 in regulating mammalian brain function and behavior. While mKO of VPS50 does not change the number of synaptic vesicles, it produces a mislocalization of the V-ATPase pump that likely impact in vesicle acidification and vesicle content to impair synaptic and neuronal activity in cultured neurons. In mice, mKO of VPS50 in the hippocampus, alter synaptic transmission and plasticity, and generated robust cognitive impairments associate to memory formation. We propose that VPS50 is an accessory protein that aids the correct recruitment of the V-ATPase pump to synaptic vesicles, thus having a crucial role controlling synaptic vesicle acidification and hence synaptic transmission.
RESUMEN
Optical Coherence Tomography (OCT) was originally conceived as a volumetric imaging method. Quickly, OCT images went beyond structural data and started to provide functional information about an object enabling for example visualization of blood flow or tissue elasticity. Minimal or no need for system alterations make functional OCT techniques useful in performing multimodal imaging, where differently contrasted images are produced in a single examination. We propose a method that further extends the current capabilities of OCT and requires no modifications to the system. Our algorithm provides information about the sample's Group Velocity Dispersion (GVD) and can be easily applied to any OCT dataset acquired with a Fourier domain system. GVD is calculated from the difference in material's optical thickness measured from two images obtained for different spectral ranges. Instead of using two separate light sources, we propose to apply a filter-based, numerical procedure that synthesizes two spectra from one broadband spectrum. We discuss the limitations of the method and present GVD values for BK7 and sapphire and ocular media: cornea and aqueous humour of a rat eye. Results corroborate previous measurements using two different light sources.
RESUMEN
Recent studies have shown potential for using polarisation sensitive optical coherence tomography (PS-OCT) to study cartilage morphology, and to be potentially used as an in vivo, non-invasive tool for detecting osteoarthritic changes. However, there has been relatively limited ability of this method to quantify the subtle changes that occur in the early stages of cartilage degeneration. An established mechanical indenting technique that has previously been used to examine the microstructural response of articular cartilage was employed to fix the bovine samples in an indented state. The samples were subject to creep loading with a constant compressive stress of 4.5 MPa and, when imaged using PS-OCT, enabled birefringent banding patterns to be observed. The magnitude of the birefringence was quantified using the birefringence coefficient (BRC) and statistical analysis revealed that PS-OCT is able to detect and quantify significant changes between healthy and early osteoarthritic cartilage (p < 0.001). This presents a novel utilization of PS-OCT for future development as an in vivo assessment tool.