Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Cell ; 165(7): 1672-1685, 2016 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-27315481

RESUMEN

Long intergenic noncoding RNAs (lincRNAs) are important regulators of gene expression. Although lincRNAs are expressed in immune cells, their functions in immunity are largely unexplored. Here, we identify an immunoregulatory lincRNA, lincRNA-EPS, that is precisely regulated in macrophages to control the expression of immune response genes (IRGs). Transcriptome analysis of macrophages from lincRNA-EPS-deficient mice, combined with gain-of-function and rescue experiments, revealed a specific role for this lincRNA in restraining IRG expression. Consistently, lincRNA-EPS-deficient mice manifest enhanced inflammation and lethality following endotoxin challenge in vivo. lincRNA-EPS localizes at regulatory regions of IRGs to control nucleosome positioning and repress transcription. Further, lincRNA-EPS mediates these effects by interacting with heterogeneous nuclear ribonucleoprotein L via a CANACA motif located in its 3' end. Together, these findings identify lincRNA-EPS as a repressor of inflammatory responses, highlighting the importance of lincRNAs in the immune system.


Asunto(s)
Regulación de la Expresión Génica , Inflamación/genética , Macrófagos/inmunología , ARN Largo no Codificante/metabolismo , Animales , Cromátides/metabolismo , Eliminación de Gen , Humanos , Listeria monocytogenes/fisiología , Listeriosis/inmunología , Macrófagos/metabolismo , Macrófagos/microbiología , Macrófagos/virología , Ratones , Ratones Endogámicos C57BL , ARN Largo no Codificante/genética , Infecciones por Respirovirus/inmunología , Virus Sendai/fisiología , Receptores Toll-Like/metabolismo , Transcriptoma
2.
Mol Cell ; 44(1): 120-33, 2011 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-21981923

RESUMEN

miRNAs are posttranscriptional regulators of gene expression that associate with Argonaute and GW182 proteins to repress translation and/or promote mRNA degradation. miRNA-mediated mRNA degradation is initiated by deadenylation, although it is not known whether deadenylases are recruited to the mRNA target directly or by default, as a consequence of a translational block. To answer this question, we performed a screen for potential interactions between the Argonaute and GW182 proteins and subunits of the two cytoplasmic deadenylase complexes. We found that human GW182 proteins recruit the PAN2-PAN3 and CCR4-CAF1-NOT deadenylase complexes through direct interactions with PAN3 and NOT1, respectively. These interactions are critical for silencing and are conserved in D. melanogaster. Our findings reveal that GW182 proteins provide a docking platform through which deadenylase complexes gain access to the poly(A) tail of miRNA targets to promote their deadenylation, and they further indicate that deadenylation is a direct effect of miRNA regulation.


Asunto(s)
Citoplasma/metabolismo , Proteínas de Drosophila/metabolismo , MicroARNs/metabolismo , Animales , Proteínas Portadoras/metabolismo , Drosophila melanogaster , Exorribonucleasas/metabolismo , Silenciador del Gen , Prueba de Complementación Genética , Células HeLa , Humanos , Poli A/metabolismo , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , Proteínas de Unión al ARN , Receptores CCR4/metabolismo , Proteína 4 de Unión a Retinoblastoma/metabolismo , Ribonucleasas/metabolismo , Factores de Transcripción/metabolismo
3.
Mol Cell ; 33(5): 661-8, 2009 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-19285948

RESUMEN

The DEAD box helicase DDX6/Me31B functions in translational repression and mRNA decapping. How particular RNA helicases are recruited specifically to distinct functional complexes is poorly understood. We present the crystal structure of the DDX6 C-terminal RecA-like domain bound to a highly conserved FDF sequence motif in the decapping activator EDC3. The FDF peptide adopts an alpha-helical conformation upon binding to DDX6, occupying a shallow groove opposite to the DDX6 surface involved in RNA binding and ATP hydrolysis. Mutagenesis of Me31B shows the relevance of the FDF interaction surface both for Me31B's accumulation in P bodies and for its ability to repress the expression of bound mRNAs. The translational repressor Tral contains a similar FDF motif. Together with mutational and competition studies, the structure reveals why the interactions of Me31B with EDC3 and Tral are mutually exclusive and how the respective decapping and translational repressor complexes might hook onto an mRNA substrate.


Asunto(s)
ARN Helicasas DEAD-box/química , Proteínas de Drosophila/química , Proteínas Proto-Oncogénicas/química , Ribonucleoproteínas Nucleares Pequeñas/química , Ribonucleoproteínas/química , Adenosina Trifosfato/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Sitios de Unión , Clonación Molecular , Secuencia Conservada , Cristalografía por Rayos X , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Humanos , Hidrólisis , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , ARN Mensajero/metabolismo , Proteínas Recombinantes/química , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/genética , Ribonucleoproteínas Nucleares Pequeñas/metabolismo
4.
EMBO J ; 31(2): 279-90, 2012 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-22085934

RESUMEN

The Dcp1:Dcp2 decapping complex catalyses the removal of the mRNA 5' cap structure. Activator proteins, including Edc3 (enhancer of decapping 3), modulate its activity. Here, we solved the structure of the yeast Edc3 LSm domain in complex with a short helical leucine-rich motif (HLM) from Dcp2. The motif interacts with the monomeric Edc3 LSm domain in an unprecedented manner and recognizes a noncanonical binding surface. Based on the structure, we identified additional HLMs in the disordered C-terminal extension of Dcp2 that can interact with Edc3. Moreover, the LSm domain of the Edc3-related protein Scd6 competes with Edc3 for the interaction with these HLMs. We show that both Edc3 and Scd6 stimulate decapping in vitro, presumably by preventing the Dcp1:Dcp2 complex from adopting an inactive conformation. In addition, we show that the C-terminal HLMs in Dcp2 are necessary for the localization of the Dcp1:Dcp2 decapping complex to P-bodies in vivo. Unexpectedly, in contrast to yeast, in metazoans the HLM is found in Dcp1, suggesting that details underlying the regulation of mRNA decapping changed throughout evolution.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Caperuzas de ARN/metabolismo , ARN de Hongos/metabolismo , ARN Mensajero/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Drosophila melanogaster/genética , Evolución Molecular , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multiproteicos , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , Caperuzas de ARN/genética , ARN de Hongos/genética , ARN Mensajero/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/fisiología , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad
5.
Nucleic Acids Res ; 41(18): 8692-705, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23863838

RESUMEN

MicroRNA (miRNA)-induced silencing complexes (miRISCs) repress translation and promote degradation of miRNA targets. Target degradation occurs through the 5'-to-3' messenger RNA (mRNA) decay pathway, wherein, after shortening of the mRNA poly(A) tail, the removal of the 5' cap structure by decapping triggers irreversible decay of the mRNA body. Here, we demonstrate that miRISC enhances the association of the decapping activators DCP1, Me31B and HPat with deadenylated miRNA targets that accumulate when decapping is blocked. DCP1 and Me31B recruitment by miRISC occurs before the completion of deadenylation. Remarkably, miRISC recruits DCP1, Me31B and HPat to engineered miRNA targets transcribed by RNA polymerase III, which lack a cap structure, a protein-coding region and a poly(A) tail. Furthermore, miRISC can trigger decapping and the subsequent degradation of mRNA targets independently of ongoing deadenylation. Thus, miRISC increases the local concentration of the decapping machinery on miRNA targets to facilitate decapping and irreversibly shut down their translation.


Asunto(s)
MicroARNs/metabolismo , Estabilidad del ARN , ARN Mensajero/metabolismo , Complejo Silenciador Inducido por ARN/metabolismo , Animales , Proteínas Argonautas/metabolismo , Caspasas , ARN Helicasas DEAD-box/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Factor 4E Eucariótico de Iniciación/metabolismo , ARN Mensajero/química , Proteínas de Unión al ARN/metabolismo
6.
Nucleic Acids Res ; 41(2): 978-94, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23172285

RESUMEN

Animal miRNAs silence the expression of mRNA targets through translational repression, deadenylation and subsequent mRNA degradation. Silencing requires association of miRNAs with an Argonaute protein and a GW182 family protein. In turn, GW182 proteins interact with poly(A)-binding protein (PABP) and the PAN2-PAN3 and CCR4-NOT deadenylase complexes. These interactions are required for the deadenylation and decay of miRNA targets. Recent studies have indicated that miRNAs repress translation before inducing target deadenylation and decay; however, whether translational repression and deadenylation are coupled or represent independent repressive mechanisms is unclear. Another remaining question is whether translational repression also requires GW182 proteins to interact with both PABP and deadenylases. To address these questions, we characterized the interaction of Drosophila melanogaster GW182 with deadenylases and defined the minimal requirements for a functional GW182 protein. Functional assays in D. melanogaster and human cells indicate that miRNA-mediated translational repression and degradation are mechanistically linked and are triggered through the interactions of GW182 proteins with PABP and deadenylases.


Asunto(s)
Proteínas de Drosophila/metabolismo , MicroARNs/metabolismo , Proteínas de Unión a Poli(A)/metabolismo , Interferencia de ARN , Ribonucleasas/metabolismo , Animales , Proteínas Portadoras/metabolismo , Proteínas de Drosophila/química , Drosophila melanogaster/enzimología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células HeLa , Humanos , Biosíntesis de Proteínas , Dominios y Motivos de Interacción de Proteínas , Estabilidad del ARN , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/química , Factores de Transcripción/química
7.
EMBO J ; 29(24): 4146-60, 2010 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-21063388

RESUMEN

miRNA-mediated gene silencing requires the GW182 proteins, which are characterized by an N-terminal domain that interacts with Argonaute proteins (AGOs), and a C-terminal silencing domain (SD). In Drosophila melanogaster (Dm) GW182 and a human (Hs) orthologue, TNRC6C, the SD was previously shown to interact with the cytoplasmic poly(A)-binding protein (PABPC1). Here, we show that two regions of GW182 proteins interact with PABPC1: the first contains a PABP-interacting motif 2 (PAM2; as shown before for TNRC6C) and the second contains the M2 and C-terminal sequences in the SD. The latter mediates indirect binding to the PABPC1 N-terminal domain. In D. melanogaster cells, the second binding site dominates; however, in HsTNRC6A-C the PAM2 motif is essential for binding to both Hs and DmPABPC1. Accordingly, a single amino acid substitution in the TNRC6A-C PAM2 motif abolishes the interaction with PABPC1. This mutation also impairs TNRC6s silencing activity. Our findings reveal that despite species-specific differences in the relative strength of the PABPC1-binding sites, the interaction between GW182 proteins and PABPC1 is critical for miRNA-mediated silencing in animal cells.


Asunto(s)
Proteínas de Drosophila/metabolismo , Silenciador del Gen , MicroARNs/metabolismo , Proteína I de Unión a Poli(A)/metabolismo , Proteínas de Unión al ARN/metabolismo , Sustitución de Aminoácidos/genética , Animales , Sitios de Unión , Línea Celular , Proteínas de Drosophila/genética , Drosophila melanogaster , Genes Reporteros , Humanos , Inmunoprecipitación , Luciferasas/genética , Luciferasas/metabolismo , Mutagénesis Sitio-Dirigida , Proteína I de Unión a Poli(A)/genética , Mapeo de Interacción de Proteínas , Proteínas de Unión al ARN/genética
8.
EMBO J ; 29(14): 2368-80, 2010 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-20543818

RESUMEN

Pat proteins regulate the transition of mRNAs from a state that is translationally active to one that is repressed, committing targeted mRNAs to degradation. Pat proteins contain a conserved N-terminal sequence, a proline-rich region, a Mid domain and a C-terminal domain (Pat-C). We show that Pat-C is essential for the interaction with mRNA decapping factors (i.e. DCP2, EDC4 and LSm1-7), whereas the P-rich region and Mid domain have distinct functions in modulating these interactions. DCP2 and EDC4 binding is enhanced by the P-rich region and does not require LSm1-7. LSm1-7 binding is assisted by the Mid domain and is reduced by the P-rich region. Structural analysis revealed that Pat-C folds into an alpha-alpha superhelix, exposing conserved and basic residues on one side of the domain. This conserved and basic surface is required for RNA, DCP2, EDC4 and LSm1-7 binding. The multiplicity of interactions mediated by Pat-C suggests that certain of these interactions are mutually exclusive and, therefore, that Pat proteins switch decapping partners allowing transitions between sequential steps in the mRNA decapping pathway.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Estructura Terciaria de Proteína , Caperuzas de ARN/metabolismo , ARN Mensajero/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Proteínas de Unión al ADN/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Pliegue de Proteína , Caperuzas de ARN/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
9.
Adv Exp Med Biol ; 768: 147-63, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23224969

RESUMEN

GW182 family proteins are essential for microRNA-mediated gene silencing in animal cells. They are recruited to miRNA targets through direct interactions with Argonaute proteins and promote target silencing. They do so by repressing translation and enhancing mRNA turnover. Although the precise mechanism of action of GW182 proteins is not fully understood, these proteins have been shown to interact with the cytoplasmic poly(A)-binding protein (PABP) and with the PAN2-PAN3 and CCR4-NOT deadenylase complexes. These findings suggest that GW182 proteins function as scaffold proteins for the assembly of the multiprotein complex that silences miRNA targets.


Asunto(s)
Proteínas Argonautas/genética , Autoantígenos/genética , MicroARNs/metabolismo , Interferencia de ARN , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Animales , Proteínas Argonautas/metabolismo , Autoantígenos/química , Autoantígenos/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Humanos , MicroARNs/genética , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Proteínas de Unión a Poli(A)/genética , Proteínas de Unión a Poli(A)/metabolismo , Unión Proteica , Biosíntesis de Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , ARN Mensajero/genética , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Ribonucleasas/genética , Ribonucleasas/metabolismo
10.
Proc Natl Acad Sci U S A ; 106(51): 21591-6, 2009 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-19966221

RESUMEN

DCP1 stimulates the decapping enzyme DCP2, which removes the mRNA 5' cap structure committing mRNAs to degradation. In multicellular eukaryotes, DCP1-DCP2 interaction is stabilized by additional proteins, including EDC4. However, most information on DCP2 activation stems from studies in S. cerevisiae, which lacks EDC4. Furthermore, DCP1 orthologs from multicellular eukaryotes have a C-terminal extension, absent in fungi. Here, we show that in metazoa, a conserved DCP1 C-terminal domain drives DCP1 trimerization. Crystal structures of the DCP1-trimerization domain reveal an antiparallel assembly comprised of three kinked alpha-helices. Trimerization is required for DCP1 to be incorporated into active decapping complexes and for efficient mRNA decapping in vivo. Our results reveal an unexpected connectivity and complexity of the mRNA decapping network in multicellular eukaryotes, which likely enhances opportunities for regulating mRNA degradation.


Asunto(s)
Biopolímeros/metabolismo , Proteínas de Drosophila/metabolismo , Endorribonucleasas/metabolismo , Caperuzas de ARN , Transactivadores/metabolismo , Secuencia de Aminoácidos , Animales , Biopolímeros/química , Caspasas , Proteínas de Drosophila/química , Endorribonucleasas/química , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Homología de Secuencia de Aminoácido , Transactivadores/química
11.
Methods Mol Biol ; 2113: 23-29, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32006305

RESUMEN

Colocalization single-molecule spectroscopy (CoSMoS) allows studying RNA-protein complexes in the full complexity of their cellular environment at single-molecule resolution. Conventionally, the interaction between a single RNA species and multiple proteins is monitored in real time. However, comparing interactions of the same proteins with different RNA species in the same cell extract promises unique insights into RNA biology. Here, we describe an approach to monitor multiple RNA species simultaneously to enable direct comparison. This approach represents a technological development to avoid conventional inter-experiment comparisons.


Asunto(s)
Proteínas de Unión al ARN/metabolismo , ARN/química , Imagen Individual de Molécula/métodos , Extractos Celulares/química , Colorantes Fluorescentes/química , Microscopía Fluorescente , ARN/metabolismo , Proteínas de Unión al ARN/química , Coloración y Etiquetado
12.
Methods Mol Biol ; 2113: 17-22, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32006304

RESUMEN

The SNAPf-tag is a chemical tag that allows rapid and highly specific covalent labeling of proteins even in the full complexity of the cellular environment. The SNAPf-tag has been instrumental to study native RNA-protein complexes at single-molecule resolution in their cellular environment as efficient labeling of the RNAs and proteins of interest is essential for this colocalization single-molecule spectroscopy (CoSMoS) technique. However, removal of excessive benzylguanine dye after the labeling reaction has remained challenging. Here, we describe a strategy to remove excessive benzylguanine dye using SNAPf-tag coated beads as sponges.


Asunto(s)
Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Imagen Individual de Molécula/métodos , Colorantes Fluorescentes/química , Microscopía Fluorescente , Imagen Molecular , ARN/química , Proteínas de Unión al ARN/química , Coloración y Etiquetado
13.
Elife ; 72018 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-29932423

RESUMEN

Most human genes contain multiple introns, necessitating mechanisms to effectively define exons and ensure their proper connection by spliceosomes. Human spliceosome assembly involves both cross-intron and cross-exon interactions, but how these work together is unclear. We examined in human nuclear extracts dynamic interactions of single pre-mRNA molecules with individual fluorescently tagged spliceosomal subcomplexes to investigate how cross-intron and cross-exon processes jointly promote pre-spliceosome assembly. U1 subcomplex bound to the 5' splice site of an intron acts jointly with U1 bound to the 5' splice site of the next intron to dramatically increase the rate and efficiency by which U2 subcomplex is recruited to the branch site/3' splice site of the upstream intron. The flanking 5' splice sites have greater than additive effects implying distinct mechanisms facilitating U2 recruitment. This synergy of 5' splice sites across introns and exons is likely important in promoting correct and efficient splicing of multi-intron pre-mRNAs.


Asunto(s)
Exones , Intrones , Precursores del ARN/genética , Empalme del ARN , Ribonucleoproteínas Nucleares Pequeñas/genética , Empalmosomas/genética , Adenosina Trifosfato/metabolismo , Biología Computacional/métodos , Células HEK293 , Humanos , Precursores del ARN/química , Precursores del ARN/metabolismo , Sitios de Empalme de ARN , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Empalmosomas/metabolismo , Empalmosomas/ultraestructura
14.
Methods Mol Biol ; 1648: 27-37, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28766287

RESUMEN

Recent development of single-molecule techniques to study pre-mRNA splicing has provided insights into the dynamic nature of the spliceosome. Colocalization single-molecule spectroscopy (CoSMoS) allows following spliceosome assembly in real time at single-molecule resolution in the full complexity of cellular extracts. A detailed protocol of CoSMoS has been published previously (Anderson and Hoskins, Methods Mol Biol 1126:217-241, 2014). Here, we provide an update on the technical advances since the first CoSMoS studies including slide surface treatment, data processing, and representation. We describe various labeling strategies to generate RNA reporters with multiple dyes (or other moieties) at specific locations.


Asunto(s)
Imagen Molecular/métodos , Precursores del ARN/metabolismo , Empalme del ARN , Animales , Humanos
15.
Artículo en Inglés | MEDLINE | ID: mdl-23209154

RESUMEN

MicroRNAs (miRNAs) are a large family of endogenous noncoding RNAs that, together with the Argonaute family of proteins (AGOs), silence the expression of complementary mRNA targets posttranscriptionally. Perfectly complementary targets are cleaved within the base-paired region by catalytically active AGOs. In the case of partially complementary targets, however, AGOs are insufficient for silencing and need to recruit a protein of the GW182 family. GW182 proteins induce translational repression, mRNA deadenylation and exonucleolytic target degradation. Recent work has revealed a direct molecular link between GW182 proteins and cellular deadenylase complexes. These findings shed light on how miRNAs bring about target mRNA degradation and promise to further our understanding of the mechanism of miRNA-mediated repression.


Asunto(s)
Proteínas Argonautas/metabolismo , Autoantígenos/metabolismo , Exorribonucleasas/metabolismo , Silenciador del Gen/fisiología , MicroARNs/metabolismo , Modelos Biológicos , Proteínas de Unión a Poli(A)/metabolismo , Mapas de Interacción de Proteínas/fisiología , Proteínas de Unión al ARN/metabolismo , Autoantígenos/genética , Mapas de Interacción de Proteínas/genética , Proteínas de Unión al ARN/genética
16.
Nat Struct Mol Biol ; 19(12): 1324-31, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23142987

RESUMEN

The removal of the mRNA 5' cap structure by the decapping enzyme DCP2 leads to rapid 5'→3' mRNA degradation by XRN1, suggesting that the two processes are coordinated, but the coupling mechanism is unknown. DCP2 associates with the decapping activators EDC4 and DCP1. Here we show that XRN1 directly interacts with EDC4 and DCP1 in human and Drosophila melanogaster cells, respectively. In D. melanogaster cells, this interaction is mediated by the DCP1 EVH1 domain and a DCP1-binding motif (DBM) in the XRN1 C-terminal region. The NMR structure of the DCP1 EVH1 domain bound to the DBM reveals that the peptide docks at a conserved aromatic cleft, which is used by EVH1 domains to recognize proline-rich ligands. Our findings reveal a role for XRN1 in decapping and provide a molecular basis for the coupling of decapping to 5'→3' mRNA degradation.


Asunto(s)
Endopeptidasas/metabolismo , Exorribonucleasas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , ARN Mensajero/metabolismo , Secuencia de Aminoácidos , Animales , Drosophila melanogaster , Endopeptidasas/química , Exorribonucleasas/química , Humanos , Proteínas Asociadas a Microtúbulos/química , Datos de Secuencia Molecular , Proteolisis , Homología de Secuencia de Aminoácido
17.
J Cell Biol ; 189(2): 289-302, 2010 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-20404111

RESUMEN

Decapping of eukaryotic messenger RNAs (mRNAs) occurs after they have undergone deadenylation, but how these processes are coordinated is poorly understood. In this study, we report that Drosophila melanogaster HPat (homologue of Pat1), a conserved decapping activator, interacts with additional decapping factors (e.g., Me31B, the LSm1-7 complex, and the decapping enzyme DCP2) and with components of the CCR4-NOT deadenylase complex. Accordingly, HPat triggers deadenylation and decapping when artificially tethered to an mRNA reporter. These activities reside, unexpectedly, in a proline-rich region. However, this region alone cannot restore decapping in cells depleted of endogenous HPat but also requires the middle (Mid) and the very C-terminal domains of HPat. We further show that the Mid and C-terminal domains mediate HPat recruitment to target mRNAs. Our results reveal an unprecedented role for the proline-rich region and the C-terminal domain of metazoan HPat in mRNA decapping and suggest that HPat is a component of the cellular mechanism that couples decapping to deadenylation in vivo.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Caperuzas de ARN/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Secuencia de Aminoácidos , Animales , Células Cultivadas , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Estabilidad del ARN , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Ribonucleasas/genética , Ribonucleasas/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/genética , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Alineación de Secuencia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda