Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Physiology (Bethesda) ; 38(3): 0, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36856309

RESUMEN

Organelles are membrane-lined structures that compartmentalize subcellular biochemical functions. Therefore, interorganelle communication is crucial for cellular responses that require the coordination of such functions. Multiple principles govern interorganelle interactions, which arise from the complex nature of organelles: position, multilingualism, continuity, heterogeneity, proximity, and bidirectionality, among others. Given their importance, alterations in organelle communication have been linked to many diseases. Among the different types of contacts, endoplasmic reticulum mitochondria interactions are the best known; however, mounting evidence indicates that other organelles also have something to say in the pathophysiological conversation.


Asunto(s)
Orgánulos , Humanos , Mitocondrias/fisiología , Retículo Endoplásmico/fisiología , Orgánulos/fisiología
2.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36982291

RESUMEN

Adipose tissue inflammation in obesity has a deleterious impact on organs such as the liver, ultimately leading to their dysfunction. We have previously shown that activation of the calcium-sensing receptor (CaSR) in pre-adipocytes induces TNF-α and IL-1ß expression and secretion; however, it is unknown whether these factors promote hepatocyte alterations, particularly promoting cell senescence and/or mitochondrial dysfunction. We generated conditioned medium (CM) from the pre-adipocyte cell line SW872 treated with either vehicle (CMveh) or the CaSR activator cinacalcet 2 µM (CMcin), in the absence or presence of the CaSR inhibitor calhex 231 10 µM (CMcin+cal). HepG2 cells were cultured with these CM for 120 h and then assessed for cell senescence and mitochondrial dysfunction. CMcin-treated cells showed increased SA-ß-GAL staining, which was absent in TNF-α- and IL-1ß-depleted CM. Compared to CMveh, CMcin arrested cell cycle, increased IL-1ß and CCL2 mRNA, and induced p16 and p53 senescence markers, which was prevented by CMcin+cal. Crucial proteins for mitochondrial function, PGC-1α and OPA1, were decreased with CMcin treatment, concomitant with fragmentation of the mitochondrial network and decreased mitochondrial transmembrane potential. We conclude that pro-inflammatory cytokines TNF-α and IL-1ß secreted by SW872 cells after CaSR activation promote cell senescence and mitochondrial dysfunction, which is mediated by mitochondrial fragmentation in HepG2 cells and whose effects were reversed with Mdivi-1. This investigation provides new evidence about the deleterious CaSR-induced communication between pre-adipocytes and liver cells, incorporating the mechanisms involved in cellular senescence.


Asunto(s)
Receptores Sensibles al Calcio , Factor de Necrosis Tumoral alfa , Humanos , Receptores Sensibles al Calcio/metabolismo , Células Hep G2 , Factor de Necrosis Tumoral alfa/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Adipocitos/metabolismo , Senescencia Celular
3.
Int J Mol Sci ; 23(10)2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35628392

RESUMEN

Glucocorticoids (GC) are steroids hormones that drive circulating glucose availability through gluconeogenesis in the liver. However, alternative splicing of the GR mRNA produces two isoforms, termed GRα and GRß. GRα is the classic receptor that binds to GCs and mediates the most described actions of GCs. GRß does not bind GCs and acts as a dominant-negative inhibitor of GRα. Moreover, GRß has intrinsic and GRα-independent transcriptional activity. To date, it remains unknown if GRß modulates glucose handling in hepatocytes. Therefore, the study aims to characterize the impact of GRß overexpression on glucose uptake and storage using an in vitro hepatocyte model. Here we show that GRß overexpression inhibits the induction of gluconeogenic genes by dexamethasone. Moreover, GRß activates the Akt pathway, increases glucose transports mRNA, increasing glucose uptake and glycogen storage as an insulin-mimetic. Our results suggest that GRß has agonist-independent insulin-mimetic actions in HepG2 cells.


Asunto(s)
Glucocorticoides , Insulina , Glucocorticoides/farmacología , Glucosa , Insulina Regular Humana , ARN Mensajero/genética , Receptores de Glucocorticoides
4.
Pharmacol Res ; 135: 112-121, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30048754

RESUMEN

Angiotensin-(19), a peptide of the non-classical renin angiotensin system, has been shown to prevent and revert hypertension and cardiac hypertrophy. We hypothetized that systemic delivery of angiotensin-(1-9) following myocardial infarction will also be protective and extend to provide protection during reperfusion of the ischemic heart. Adult Sprague Dawley rats were subjected to left anterior descending artery ligation and treated with angiotensin-(1-9) via osmotic mini-pump for 2 weeks in the presence or absence of Mas receptor or AT2R antagonists (A779 and PD123319, respectively). Myocardial death and left ventricular function were evaluated after infarction. Infarct size and functional parameters were determined in isolated rat hearts after global ischemia/reperfusion in the presence of angiotensin-(1-9) plus receptor antagonists or Akt inhibitor at reperfusion. in vitro, neonatal rat ventricular cardiomyocytes underwent simulated ischemia/reperfusion and angiotensin-(1-9) was co-incubated with A779, PD123319 or Akt inhibitor. Systemic delivery of angiotensin-(1-9) significantly decreased cell death and improved left ventricular recovery after in vivo myocardial infarction. Perfusion with the peptide reduced the infarct size and improved functional recovery after ex vivo ischemia/reperfusion. In vitro, angiotensin-(1-9) decreased cell death in isolated neonatal rat ventricular cardiomyocytes subjected to simulated ischemia/reperfusion. The cardioprotective effects of angiotensin-(1-9) were blocked by PD123319 and Akti VIII but not by A779. Angiotensin-(1-9) limits reperfusion-induced cell death by an AT2R- and Aktdependent mechanism. Angiotensin-(1-9) is a novel strategy to protect against cardiac ischemia/reperfusion injury.


Asunto(s)
Angiotensina I/uso terapéutico , Cardiotónicos/uso terapéutico , Daño por Reperfusión Miocárdica/prevención & control , Fragmentos de Péptidos/uso terapéutico , Angiotensina I/farmacología , Animales , Animales Recién Nacidos , Cardiotónicos/farmacología , Células Cultivadas , Corazón/efectos de los fármacos , Corazón/fisiología , Masculino , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Miocardio/metabolismo , Fragmentos de Péptidos/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Sprague-Dawley , Receptor de Angiotensina Tipo 2/metabolismo
5.
Biochim Biophys Acta Mol Basis Dis ; 1863(11): 2891-2903, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28739174

RESUMEN

Chronic hypoxia exacerbates proliferation of pulmonary arterial smooth muscle cells (PASMC), thereby reducing the lumen of pulmonary arteries. This leads to poor blood oxygenation and cardiac work overload, which are the basis of diseases such as pulmonary artery hypertension (PAH). Recent studies revealed an emerging role of mitochondria in PAH pathogenesis, as key regulators of cell survival and metabolism. In this work, we assessed whether hypoxia-induced mitochondrial fragmentation contributes to the alterations of both PASMC death and proliferation. In previous work in cardiac myocytes, we showed that trimetazidine (TMZ), a partial inhibitor of lipid oxidation, stimulates mitochondrial fusion and preserves mitochondrial function. Thus, here we evaluated whether TMZ-induced mitochondrial fusion can prevent human PASMC proliferation in an in vitro hypoxic model. Using confocal fluorescence microscopy, we showed that prolonged hypoxia (48h) induces mitochondrial fragmentation along with higher levels of the mitochondrial fission protein DRP1. Concomitantly, both mitochondrial potential and respiratory rates decreased, indicative of mitochondrial dysfunction. In accordance with a metabolic shift towards non-mitochondrial ATP generation, mRNA levels of glycolytic markers HK2, PFKFB2 and GLUT1 increased during hypoxia. Incubation of PASMC with TMZ, prior to hypoxia, prevented all these changes and precluded the increase in PASMC proliferation. These findings were also observed using Mdivi-1 (a pharmacological DRP1 inhibitor) or a dominant negative DRP1 K38A as pre-treatments. Altogether, our data indicate that TMZ exerts a protective role against hypoxia-induced PASMC proliferation, by preserving mitochondrial function, thus highlighting DRP1-dependent morphology as a novel therapeutic approach for diseases such as PAH.


Asunto(s)
Proliferación Celular , Mitocondrias Musculares/metabolismo , Dinámicas Mitocondriales , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Arteria Pulmonar/metabolismo , Hipoxia de la Célula , Humanos , Mitocondrias Musculares/patología , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Arteria Pulmonar/patología
6.
Biochim Biophys Acta ; 1852(10 Pt A): 2096-105, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26171812

RESUMEN

Eukaryotic cells contain a variety of subcellular organelles, each of which performs unique tasks. Thus follows that in order to coordinate these different intracellular functions, a highly dynamic system of communication must exist between the various compartments. Direct endoplasmic reticulum (ER)-mitochondria communication is facilitated by the physical interaction of their membranes in dedicated structural domains known as mitochondria-associated membranes (MAMs), which facilitate calcium (Ca(2+)) and lipid transfer between organelles and also act as platforms for signaling. Numerous studies have demonstrated the importance of MAM in ensuring correct function of both organelles, and recently MAMs have been implicated in the genesis of various human diseases. Here, we review the salient structural features of interorganellar communication via MAM and discuss the most common experimental techniques employed to assess functionality of these domains. Finally, we will highlight the contribution of MAM to a variety of cellular functions and consider the potential role of MAM in the genesis of metabolic diseases. In doing so, the importance for cell functions of maintaining appropriate communication between ER and mitochondria will be emphasized.

7.
Biochim Biophys Acta ; 1853(5): 1113-8, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25686534

RESUMEN

Diabetic cardiomyopathy (DCM) is a common consequence of longstanding type 2 diabetes mellitus (T2DM) and encompasses structural, morphological, functional, and metabolic abnormalities in the heart. Myocardial energy metabolism depends on mitochondria, which must generate sufficient ATP to meet the high energy demands of the myocardium. Dysfunctional mitochondria are involved in the pathophysiology of diabetic heart disease. A large body of evidence implicates myocardial insulin resistance in the pathogenesis of DCM. Recent studies show that insulin signaling influences myocardial energy metabolism by impacting cardiomyocyte mitochondrial dynamics and function under physiological conditions. However, comprehensive understanding of molecular mechanisms linking insulin signaling and changes in the architecture of the mitochondrial network in diabetic cardiomyopathy is lacking. This review summarizes our current understanding of how defective insulin signaling impacts cardiac function in diabetic cardiomyopathy and discusses the potential role of mitochondrial dynamics.


Asunto(s)
Cardiomiopatías Diabéticas/metabolismo , Insulina/metabolismo , Dinámicas Mitocondriales , Transducción de Señal , Animales , Cardiomiopatías Diabéticas/patología , Humanos , Modelos Biológicos , Miocardio/metabolismo , Miocardio/patología
8.
Am J Physiol Endocrinol Metab ; 310(8): E587-E596, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26884385

RESUMEN

Calcium signaling plays a crucial role in a multitude of events within the cardiomyocyte, including cell cycle control, growth, apoptosis, and autophagy. With respect to calcium-dependent regulation of autophagy, ion channels and exchangers, receptors, and intracellular mediators play fundamental roles. In this review, we discuss calcium-dependent regulation of cardiomyocyte autophagy, a lysosomal mechanism that is often cytoprotective, serving to defend against disease-related stress and nutrient insufficiency. We also highlight the importance of the subcellular distribution of calcium and related proteins, interorganelle communication, and other key signaling events that govern cardiomyocyte autophagy.


Asunto(s)
Autofagia , Señalización del Calcio , Calcio/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
9.
Am J Physiol Endocrinol Metab ; 306(1): E1-E13, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24085037

RESUMEN

Insulin is a major regulator of glucose metabolism, stimulating its mitochondrial oxidation in skeletal muscle cells. Mitochondria are dynamic organelles that can undergo structural remodeling in order to cope with these ever-changing metabolic demands. However, the process by which mitochondrial morphology impacts insulin signaling in the skeletal muscle cells remains uncertain. To address this question, we silenced the mitochondrial fusion proteins Mfn2 and Opa1 and assessed insulin-dependent responses in L6 rat skeletal muscle cells. We found that mitochondrial fragmentation attenuates insulin-stimulated Akt phosphorylation, glucose uptake and cell respiratory rate. Importantly, we found that insulin induces a transient rise in mitochondrial Ca(2+) uptake, which was attenuated by silencing Opa1 or Mfn2. Moreover, treatment with Ruthenium red, an inhibitor of mitochondrial Ca(2+) uptake, impairs Akt signaling without affecting mitochondrial dynamics. All together, these results suggest that control of mitochondrial Ca(2+) uptake by mitochondrial morphology is a key event for insulin-induced glucose uptake.


Asunto(s)
Calcio/metabolismo , Glucosa/metabolismo , Insulina/farmacología , Mitocondrias Musculares/ultraestructura , Músculo Esquelético/ultraestructura , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Anticuerpos/farmacología , Línea Celular , GTP Fosfohidrolasas/antagonistas & inhibidores , GTP Fosfohidrolasas/fisiología , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/fisiología , Mitocondrias Musculares/metabolismo , Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/fisiología , Músculo Esquelético/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/efectos de los fármacos , Ratas , Transducción de Señal/fisiología
10.
Front Cell Dev Biol ; 12: 1301433, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38778912

RESUMEN

Aging population has led to an increased prevalence of chronic and degenerative pathologies. A manifestation of unhealthy aging is frailty, a geriatric syndrome that implies a non-specific state of greater vulnerability. Currently, methods for frailty diagnosis are based exclusively on clinical observation. The aim of this study is to determine whether the bioenergetic capacity defined as mitochondrial oxygen consumption rate (OCR) of peripheral circulation mononuclear cells (PBMC) associates with the frailty phenotype in older adults and with their nutritional status. This is a cross-sectional analytic study of 58 participants 70 years and older, 18 frail and 40 non-frail adults, from the ALEXANDROS cohort study, previously described. Participants were characterized through sociodemographic and anthropometric assessments. Frail individuals displayed a higher frequency of osteoporosis and depression. The mean age of the participants was 80.2 ± 5.2 years, similar in both groups of men and women. Regarding the nutritional status defined as the body mass index, most non-frail individuals were normal or overweight, while frail participants were mostly overweight or obese. We observed that OCR was significantly decreased in frail men (p < 0.01). Age was also associated with significant differences in oxygen consumption in frail patients, with lower oxygen consumption being observed in those over 80 years of age. Therefore, the use of PBMC can result in an accessible fingerprint that may identify initial stages of frailty in a minimally invasive way.

11.
Curr Cardiol Rev ; 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38275069

RESUMEN

The use of cardioprotective strategies as adjuvants of cardioplegic solutions has become an ideal alternative for the improvement of post-surgery heart recovery. The choice of the optimal cardioplegia, as well as its distribution mechanism, remains controversial in the field of cardiovascular surgery. There is still a need to search for new and better cardioprotective methods during cardioplegic procedures. New techniques for the management of cardiovascular complications during cardioplegia have evolved with new alternatives and additives, and each new strategy provides a tool to neutralize the damage after ischemia/reperfusion events. Researchers and clinicians have committed themselves to studying the effect of new strategies and adjuvant components with the potential to improve the cardioprotective effect of cardioplegic solutions in preventing myocardial ischemia/reperfusion-induced injury during cardiac surgery. The aim of this review is to explore the different types of cardioplegia, their protection mechanisms, and which strategies have been proposed to enhance the function of these solutions in hearts exposed to cardiovascular pathologies that require surgical alternatives for their corrective progression.

12.
Front Cell Dev Biol ; 10: 946678, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36060801

RESUMEN

The complex physiology of eukaryotic cells requires that a variety of subcellular organelles perform unique tasks, even though they form highly dynamic communication networks. In the case of the endoplasmic reticulum (ER) and mitochondria, their functional coupling relies on the physical interaction between their membranes, mediated by domains known as mitochondria-ER contacts (MERCs). MERCs act as shuttles for calcium and lipid transfer between organelles, and for the nucleation of other subcellular processes. Of note, mounting evidence shows that they are heterogeneous structures, which display divergent behaviors depending on the cell type. Furthermore, MERCs are plastic structures that remodel according to intra- and extracellular cues, thereby adjusting the function of both organelles to the cellular needs. In consonance with this notion, the malfunction of MERCs reportedly contributes to the development of several age-related disorders. Here, we integrate current literature to describe how MERCs change, starting from undifferentiated cells, and their transit through specialization, malignant transformation (i.e., dedifferentiation), and aging/senescence. Along this journey, we will review the function of MERCs and their relevance for pivotal cell types, such as stem and cancer cells, cardiac, skeletal, and smooth myocytes, neurons, leukocytes, and hepatocytes, which intervene in the progression of chronic diseases related to age.

13.
Front Nutr ; 9: 979624, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36225871

RESUMEN

Sucralose is one of the most widely used artificial sweeteners used by the food industry to reduce the calorie density of their products. Although broadly regarded as innocuous, studies show contrasting results depending on whether the research subjects are lean or overweight. In this study, we studied the effect of sucralose consumption on glucose homeostasis in a model of obesity. Male C57BL/6J mice were fed ad libitum with control or a high-fat diet (HFD) and drank either water or sucralose (0.1 mg/mL) for 8 weeks. To characterize the ensuing metabolic changes, we evaluated weight gain, glucose and pyruvate tolerance, and physical performance. Also, we assessed markers of steatosis and mitochondrial mass and function in the liver. Our results show that sucralose reduced weight gain, glucose, and pyruvate intolerance, and prevented the decrease in physical performance of HFD-fed mice. In the liver, sucralose also had a positive effect, preventing the decrease in mitochondrial mass exerted by HFD. Altogether, our results indicate that in the context of an obesogenic diet, sucralose has a beneficial effect at the organismal and hepatic levels.

14.
Front Nutr ; 8: 775382, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34869541

RESUMEN

Fatty acid overload, either of the saturated palmitic acid (PA) or the unsaturated oleic acid (OA), causes triglyceride accumulation into specialized organelles termed lipid droplets (LD). However, only PA overload leads to liver damage mediated by mitochondrial dysfunction. Whether these divergent outcomes stem from differential effects of PA and OA on LD and mitochondria joint dynamics remains to be uncovered. Here, we contrast how both fatty acids impact the morphology and interaction between both organelles and mitochondrial bioenergetics in HepG2 cells. Using confocal microscopy, we showed that short-term (2-24 h) OA overload promotes more and bigger LD accumulation than PA. Oxygen polarography indicated that both treatments stimulated mitochondrial respiration; however, OA favored an overall build-up of the mitochondrial potential, and PA evoked mitochondrial fragmentation, concomitant with an ATP-oriented metabolism. Even though PA-induced a lesser increase in LD-mitochondria proximity than OA, those LD associated with highly active mitochondria suggest that they interact mainly to fuel fatty acid oxidation and ATP synthesis (that is, metabolically "active" LD). On the contrary, OA overload seemingly stimulated LD-mitochondria interaction mainly for LD growth (thus metabolically "passive" LDs). In sum, these differences point out that OA readily accumulates in LD, likely reducing their toxicity, while PA preferably stimulates mitochondrial oxidative metabolism, which may contribute to liver damage progression.

15.
Front Cell Dev Biol ; 9: 613336, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33718356

RESUMEN

In recent decades, compelling evidence has emerged showing that organelles are not static structures but rather form a highly dynamic cellular network and exchange information through membrane contact sites. Although high-throughput techniques facilitate identification of novel contact sites (e.g., organelle-organelle and organelle-vesicle interactions), little is known about their impact on cellular physiology. Moreover, even less is known about how the dysregulation of these structures impacts on cellular function and therefore, disease. Particularly, cancer cells display altered signaling pathways involving several cell organelles; however, the relevance of interorganelle communication in oncogenesis and/or cancer progression remains largely unknown. This review will focus on organelle contacts relevant to cancer pathogenesis. We will highlight specific proteins and protein families residing in these organelle-interfaces that are known to be involved in cancer-related processes. First, we will review the relevance of endoplasmic reticulum (ER)-mitochondria interactions. This section will focus on mitochondria-associated membranes (MAMs) and particularly the tethering proteins at the ER-mitochondria interphase, as well as their role in cancer disease progression. Subsequently, the role of Ca2+ at the ER-mitochondria interphase in cancer disease progression will be discussed. Members of the Bcl-2 protein family, key regulators of cell death, also modulate Ca2+ transport pathways at the ER-mitochondria interphase. Furthermore, we will review the role of ER-mitochondria communication in the regulation of proteostasis, focusing on the ER stress sensor PERK (PRKR-like ER kinase), which exerts dual roles in cancer. Second, we will review the relevance of ER and mitochondria interactions with other organelles. This section will focus on peroxisome and lysosome organelle interactions and their impact on cancer disease progression. In this context, the peroxisome biogenesis factor (PEX) gene family has been linked to cancer. Moreover, the autophagy-lysosome system is emerging as a driving force in the progression of numerous human cancers. Thus, we will summarize our current understanding of the role of each of these organelles and their communication, highlighting how alterations in organelle interfaces participate in cancer development and progression. A better understanding of specific organelle communication sites and their relevant proteins may help to identify potential pharmacological targets for novel therapies in cancer control.

16.
Front Cardiovasc Med ; 8: 770421, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34869687

RESUMEN

Despite important advances in the treatment of myocardial infarction that have significantly reduced mortality, there is still an unmet need to limit the infarct size after reperfusion injury in order to prevent the onset and severity of heart failure. Multiple cardioprotective maneuvers, therapeutic targets, peptides and drugs have been developed to effectively protect the myocardium from reperfusion-induced cell death in preclinical studies. Nonetheless, the translation of these therapies from laboratory to clinical contexts has been quite challenging. Comorbidities, comedications or inadequate ischemia/reperfusion experimental models are clearly identified variables that need to be accounted for in order to achieve effective cardioprotection studies. The aging heart is characterized by altered proteostasis, DNA instability, epigenetic changes, among others. A vast number of studies has shown that multiple therapeutic strategies, such as ischemic conditioning phenomena and protective drugs are unable to protect the aged heart from myocardial infarction. In this Mini-Review, we will provide an updated state of the art concerning potential new cardioprotective strategies targeting the aging heart.

17.
Cell Death Dis ; 12(7): 657, 2021 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-34183648

RESUMEN

Subcellular organelles communicate with each other to regulate function and coordinate responses to changing cellular conditions. The physical-functional coupling of the endoplasmic reticulum (ER) with mitochondria allows for the direct transfer of Ca2+ between organelles and is an important avenue for rapidly increasing mitochondrial metabolic activity. As such, increasing ER-mitochondrial coupling can boost the generation of ATP that is needed to restore homeostasis in the face of cellular stress. The mitochondrial unfolded protein response (mtUPR) is activated by the accumulation of unfolded proteins in mitochondria. Retrograde signaling from mitochondria to the nucleus promotes mtUPR transcriptional responses aimed at restoring protein homeostasis. It is currently unknown whether the changes in mitochondrial-ER coupling also play a role during mtUPR stress. We hypothesized that mitochondrial stress favors an expansion of functional contacts between mitochondria and ER, thereby increasing mitochondrial metabolism as part of a protective response. Hela cells were treated with doxycycline, an antibiotic that inhibits the translation of mitochondrial-encoded proteins to create protein disequilibrium. Treatment with doxycycline decreased the abundance of mitochondrial encoded proteins while increasing expression of CHOP, C/EBPß, ClpP, and mtHsp60, markers of the mtUPR. There was no change in either mitophagic activity or cell viability. Furthermore, ER UPR was not activated, suggesting focused activation of the mtUPR. Within 2 h of doxycycline treatment, there was a significant increase in physical contacts between mitochondria and ER that was distributed throughout the cell, along with an increase in the kinetics of mitochondrial Ca2+ uptake. This was followed by the rise in the rate of oxygen consumption at 4 h, indicating a boost in mitochondrial metabolic activity. In conclusion, an early phase of the response to doxycycline-induced mitochondrial stress is an increase in mitochondrial-ER coupling that potentiates mitochondrial metabolic activity as a means to support subsequent steps in the mtUPR pathway and sustain cellular adaptation.


Asunto(s)
Antibacterianos/farmacología , Doxiciclina/farmacología , Retículo Endoplásmico/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Respuesta de Proteína Desplegada/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/patología , Femenino , Células HeLa , Humanos , Cinética , Mitocondrias/metabolismo , Mitocondrias/patología , Proteínas Mitocondriales/metabolismo , Consumo de Oxígeno/efectos de los fármacos
18.
J Clin Invest ; 131(18)2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34343133

RESUMEN

Decreased skeletal muscle strength and mitochondrial dysfunction are characteristic of diabetes. The actions of insulin and IGF-1 through the insulin receptor (IR) and IGF-1 receptor (IGF1R) maintain muscle mass via suppression of forkhead box O (FoxO) transcription factors, but whether FoxO activation coordinates atrophy in concert with mitochondrial dysfunction is unknown. We show that mitochondrial respiration and complex I activity were decreased in streptozotocin (STZ) diabetic muscle, but these defects were reversed in muscle-specific FoxO1, -3, and -4 triple-KO (M-FoxO TKO) mice rendered diabetic with STZ. In the absence of systemic glucose or lipid abnormalities, muscle-specific IR KO (M-IR-/-) or combined IR/IGF1R KO (MIGIRKO) impaired mitochondrial respiration, decreased ATP production, and increased ROS. These mitochondrial abnormalities were not present in muscle-specific IR, IGF1R, and FoxO1, -3, and -4 quintuple-KO mice (M-QKO). Acute tamoxifen-inducible deletion of IR and IGF1R also decreased muscle pyruvate respiration, complex I activity, and supercomplex assembly. Although autophagy was increased when IR and IGF1R were deleted in muscle, mitophagy was not increased. Mechanistically, RNA-Seq revealed that complex I core subunits were decreased in STZ-diabetic and MIGIRKO muscle, and these changes were not present with FoxO KO in STZ-FoxO TKO and M-QKO mice. Thus, insulin-deficient diabetes or loss of insulin/IGF-1 action in muscle decreases complex I-driven mitochondrial respiration and supercomplex assembly in part by FoxO-mediated repression of complex I subunit expression.


Asunto(s)
Complejo I de Transporte de Electrón/metabolismo , Factores de Transcripción Forkhead/metabolismo , Músculo Esquelético/metabolismo , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/metabolismo , Animales , Diabetes Mellitus Experimental/metabolismo , Metabolismo Energético , Factores de Transcripción Forkhead/deficiencia , Factores de Transcripción Forkhead/genética , Masculino , Ratones , Ratones Noqueados , Mitocondrias Musculares/metabolismo , Modelos Biológicos , Receptor IGF Tipo 1/deficiencia , Receptor IGF Tipo 1/genética , Receptor de Insulina/deficiencia , Receptor de Insulina/genética
19.
Trends Endocrinol Metab ; 31(2): 67-70, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31859214

RESUMEN

Chile has experienced rapid epidemiological transitions characterized by decreasing infant mortality, population aging, and a shift towards obesity with an increase in noncommunicable diseases (NCDs). Today, tobacco, alcohol, and ultraprocessed foods are the main risk factors for these diseases. Based on Chile's experience in tobacco control, we discuss paths to make progress in population evidence-based strategies to improve overall community health.


Asunto(s)
Bebidas Alcohólicas , Enfermedad Crónica , Alimentos , Política de Salud , Legislación como Asunto , Enfermedades no Transmisibles , Salud Pública , Productos de Tabaco , Bebidas Alcohólicas/legislación & jurisprudencia , Bebidas Alcohólicas/normas , Chile , Enfermedad Crónica/epidemiología , Enfermedad Crónica/prevención & control , Alimentos/normas , Política de Salud/legislación & jurisprudencia , Humanos , Enfermedades no Transmisibles/epidemiología , Enfermedades no Transmisibles/prevención & control , Salud Pública/legislación & jurisprudencia , Salud Pública/normas , Ciencia , Productos de Tabaco/legislación & jurisprudencia , Productos de Tabaco/normas
20.
Front Nutr ; 7: 585484, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33537337

RESUMEN

Sucralose is a non-caloric artificial sweetener widely used in processed foods that reportedly affects energy homeostasis through partially understood mechanisms. Mitochondria are organelles fundamental for cellular bioenergetics that are closely related to the development of metabolic diseases. Here, we addressed whether sucralose alters mitochondrial bioenergetics in the enterocyte cell line Caco-2. Sucralose exposure (0.5-50 mM for 3-24 h) increased cellular reductive power assessed through MTT assay, suggesting enhanced bioenergetics. Low doses of sucralose (0.5 and 5 mM) for 3 h stimulated mitochondrial respiration, measured through oxygraphy, and elevated mitochondrial transmembrane potential and cytoplasmic Ca2+, evaluated by fluorescence microscopy. Contrary to other cell types, the increase in mitochondrial respiration was insensitive to inhibition of mitochondrial Ca2+ uptake. These findings suggest that sucralose alters enterocyte energy homeostasis, contributing to its effects on organismal metabolism.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda