Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
PLoS Pathog ; 18(5): e1010541, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35576228

RESUMEN

The bacterial plant pathogen Pseudomonas syringae requires type III secreted effectors (T3SEs) for pathogenesis. However, a major facet of plant immunity entails the recognition of a subset of P. syringae's T3SEs by intracellular host receptors in a process called Effector-Triggered Immunity (ETI). Prior work has shown that ETI-eliciting T3SEs are pervasive in the P. syringae species complex raising the question of how P. syringae mitigates its ETI load to become a successful pathogen. While pathogens can evade ETI by T3SE mutation, recombination, or loss, there is increasing evidence that effector-effector (a.k.a., metaeffector) interactions can suppress ETI. To study the ETI-suppression potential of P. syringae T3SE repertoires, we compared the ETI-elicitation profiles of two genetically divergent strains: P. syringae pv. tomato DC3000 (PtoDC3000) and P. syringae pv. maculicola ES4326 (PmaES4326), which are both virulent on Arabidopsis thaliana but harbour largely distinct effector repertoires. Of the 529 T3SE alleles screened on A. thaliana Col-0 from the P. syringae T3SE compendium (PsyTEC), 69 alleles from 21 T3SE families elicited ETI in at least one of the two strain backgrounds, while 50 elicited ETI in both backgrounds, resulting in 19 differential ETI responses including two novel ETI-eliciting families: AvrPto1 and HopT1. Although most of these differences were quantitative, three ETI responses were completely absent in one of the pathogenic backgrounds. We performed ETI suppression screens to test if metaeffector interactions contributed to these ETI differences, and found that HopQ1a suppressed AvrPto1m-mediated ETI, while HopG1c and HopF1g suppressed HopT1b-mediated ETI. Overall, these results show that P. syringae strains leverage metaeffector interactions and ETI suppression to overcome the ETI load associated with their native T3SE repertoires.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas Bacterianas/genética , Humanos , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Pseudomonas syringae
2.
Sci Rep ; 12(1): 6534, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35444223

RESUMEN

The bacterial phytopathogen Pseudomonas syringae causes disease on a wide array of plants, including the model plant Arabidopsis thaliana and its agronomically important relatives in the Brassicaceae family. To cause disease, P. syringae delivers effector proteins into plant cells through a type III secretion system. In response, plant nucleotide-binding leucine-rich repeat proteins recognize specific effectors and mount effector-triggered immunity (ETI). While ETI is pervasive across A. thaliana, with at least 19 families of P. syringae effectors recognized in this model species, the ETI landscapes of crop species have yet to be systematically studied. Here, we investigated the conservation of the A. thaliana ETI landscape in two closely related oilseed crops, Brassica napus (canola) and Camelina sativa (false flax). We show that the level of immune conservation is inversely related to the degree of evolutionary divergence from A. thaliana, with the more closely related C. sativa losing ETI responses to only one of the 19 P. syringae effectors tested, while the more distantly related B. napus loses ETI responses to four effectors. In contrast to the qualitative conservation of immune response, the quantitative rank order is not as well-maintained across the three species and diverges increasingly with evolutionary distance from A. thaliana. Overall, our results indicate that the A. thaliana ETI profile is qualitatively conserved in oilseed crops, but quantitatively distinct.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Bacterianas/metabolismo , Productos Agrícolas/metabolismo , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Pseudomonas syringae
3.
Front Plant Sci ; 13: 981684, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212348

RESUMEN

A key facet of innate immunity in plants entails the recognition of pathogen "effector" virulence proteins by host Nucleotide-Binding Leucine-Rich Repeat Receptors (NLRs). Among characterized NLRs, the broadly conserved ZAR1 NLR is particularly remarkable due to its capacity to recognize at least six distinct families of effectors from at least two bacterial genera. This expanded recognition spectrum is conferred through interactions between ZAR1 and a dynamic network of two families of Receptor-Like Cytoplasmic Kinases (RLCKs): ZED1-Related Kinases (ZRKs) and PBS1-Like Kinases (PBLs). In this review, we survey the history of functional studies on ZAR1, with an emphasis on how the ZAR1-RLCK network functions to trap diverse effectors. We discuss 1) the dynamics of the ZAR1-associated RLCK network; 2) the specificity between ZRKs and PBLs; and 3) the specificity between effectors and the RLCK network. We posit that the shared protein fold of kinases and the switch-like properties of their interactions make them ideal effector sensors, enabling ZAR1 to act as a broad spectrum guardian of host kinases.

4.
Curr Opin Plant Biol ; 62: 102011, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33677388

RESUMEN

The natural diversity of pathogen effectors and host immune components represents a snapshot of the underlying evolutionary processes driving the host-pathogen arms race. In plants, this arms race is manifested by an ongoing cycle of disease and resistance driven by pathogenic effectors that promote disease (effector-triggered susceptibility; ETS) and plant resistance proteins that recognize effector activity to trigger immunity (effector-triggered immunity; ETI). Here we discuss how this ongoing ETS-ETI cycle has shaped the natural diversity of both plant resistance proteins and pathogen effectors. We focus on the evolutionary forces that drive the diversification of the molecules that determine the outcome of plant-pathogen interactions and introduce the concept of metapopulation dynamics (i.e., the introduction of genetic variation from conspecific organisms in different populations) as an alternative mechanism that can introduce and maintain diversity in both host and pathogen populations.


Asunto(s)
Interacciones Huésped-Patógeno , Enfermedades de las Plantas , Inmunidad de la Planta , Interacciones Huésped-Patógeno/genética , Enfermedades de las Plantas/genética , Inmunidad de la Planta/genética , Proteínas de Plantas , Plantas/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda