Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Immunity ; 54(10): 2399-2416.e6, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34481543

RESUMEN

With the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with increased transmissibility and potential resistance, antibodies and vaccines with broadly inhibitory activity are needed. Here, we developed a panel of neutralizing anti-SARS-CoV-2 monoclonal antibodies (mAbs) that bound the receptor binding domain of the spike protein at distinct epitopes and blocked virus attachment to its host receptor, human angiotensin converting enzyme-2 (hACE2). Although several potently neutralizing mAbs protected K18-hACE2 transgenic mice against infection caused by ancestral SARS-CoV-2 strains, others induced escape variants in vivo or lost neutralizing activity against emerging strains. One mAb, SARS2-38, potently neutralized all tested SARS-CoV-2 variants of concern and protected mice against challenge by multiple SARS-CoV-2 strains. Structural analysis showed that SARS2-38 engaged a conserved epitope proximal to the receptor binding motif. Thus, treatment with or induction of neutralizing antibodies that bind conserved spike epitopes may limit the loss of potency of therapies or vaccines against emerging SARS-CoV-2 variants.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Epítopos/inmunología , SARS-CoV-2/inmunología , Secuencias de Aminoácidos , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/uso terapéutico , COVID-19/prevención & control , COVID-19/virología , Epítopos/química , Epítopos/metabolismo , Humanos , Cadenas Ligeras de Inmunoglobulina/química , Cadenas Ligeras de Inmunoglobulina/metabolismo , Ratones , Pruebas de Neutralización , Dominios Proteicos , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología
2.
Immunity ; 54(9): 2159-2166.e6, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34464596

RESUMEN

The emergence of SARS-CoV-2 antigenic variants with increased transmissibility is a public health threat. Some variants show substantial resistance to neutralization by SARS-CoV-2 infection- or vaccination-induced antibodies. Here, we analyzed receptor binding domain-binding monoclonal antibodies derived from SARS-CoV-2 mRNA vaccine-elicited germinal center B cells for neutralizing activity against the WA1/2020 D614G SARS-CoV-2 strain and variants of concern. Of five monoclonal antibodies that potently neutralized the WA1/2020 D614G strain, all retained neutralizing capacity against the B.1.617.2 variant, four also neutralized the B.1.1.7 variant, and only one, 2C08, also neutralized the B.1.351 and B.1.1.28 variants. 2C08 reduced lung viral load and morbidity in hamsters challenged with the WA1/2020 D614G, B.1.351, or B.1.617.2 strains. Clonal analysis identified 2C08-like public clonotypes among B cells responding to SARS-CoV-2 infection or vaccination in 41 out of 181 individuals. Thus, 2C08-like antibodies can be induced by SARS-CoV-2 vaccines and mitigate resistance by circulating variants of concern.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/metabolismo , Linfocitos B/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , Centro Germinal/inmunología , Pulmón/virología , SARS-CoV-2/fisiología , Animales , Células Cultivadas , Células Clonales , Cricetinae , Modelos Animales de Enfermedad , Humanos , Pruebas de Neutralización , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación , Carga Viral
3.
Nature ; 605(7911): 640-652, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35361968

RESUMEN

The global emergence of many severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants jeopardizes the protective antiviral immunity induced after infection or vaccination. To address the public health threat caused by the increasing SARS-CoV-2 genomic diversity, the National Institute of Allergy and Infectious Diseases within the National Institutes of Health established the SARS-CoV-2 Assessment of Viral Evolution (SAVE) programme. This effort was designed to provide a real-time risk assessment of SARS-CoV-2 variants that could potentially affect the transmission, virulence, and resistance to infection- and vaccine-induced immunity. The SAVE programme is a critical data-generating component of the US Government SARS-CoV-2 Interagency Group to assess implications of SARS-CoV-2 variants on diagnostics, vaccines and therapeutics, and for communicating public health risk. Here we describe the coordinated approach used to identify and curate data about emerging variants, their impact on immunity and effects on vaccine protection using animal models. We report the development of reagents, methodologies, models and notable findings facilitated by this collaborative approach and identify future challenges. This programme is a template for the response to rapidly evolving pathogens with pandemic potential by monitoring viral evolution in the human population to identify variants that could reduce the effectiveness of countermeasures.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Evolución Biológica , Vacunas contra la COVID-19 , Humanos , National Institute of Allergy and Infectious Diseases (U.S.) , Pandemias/prevención & control , Variantes Farmacogenómicas , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , Estados Unidos/epidemiología , Virulencia
4.
Nature ; 596(7870): 103-108, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34153975

RESUMEN

Rapidly emerging SARS-CoV-2 variants jeopardize antibody-based countermeasures. Although cell culture experiments have demonstrated a loss of potency of several anti-spike neutralizing antibodies against variant strains of SARS-CoV-21-3, the in vivo importance of these results remains uncertain. Here we report the in vitro and in vivo activity of a panel of monoclonal antibodies (mAbs), which correspond to many in advanced clinical development by Vir Biotechnology, AbbVie, AstraZeneca, Regeneron and Lilly, against SARS-CoV-2 variant viruses. Although some individual mAbs showed reduced or abrogated neutralizing activity in cell culture against B.1.351, B.1.1.28, B.1.617.1 and B.1.526 viruses with mutations at residue E484 of the spike protein, low prophylactic doses of mAb combinations protected against infection by many variants in K18-hACE2 transgenic mice, 129S2 immunocompetent mice and hamsters, without the emergence of resistance. Exceptions were LY-CoV555 monotherapy and LY-CoV555 and LY-CoV016 combination therapy, both of which lost all protective activity, and the combination of AbbVie 2B04 and 47D11, which showed a partial loss of activity. When administered after infection, higher doses of several mAb cocktails protected in vivo against viruses with a B.1.351 spike gene. Therefore, many-but not all-of the antibody products with Emergency Use Authorization should retain substantial efficacy against the prevailing variant strains of SARS-CoV-2.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Antivirales/farmacología , Anticuerpos Antivirales/uso terapéutico , COVID-19/virología , Pruebas de Neutralización , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/inmunología , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/farmacología , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/inmunología , COVID-19/genética , COVID-19/inmunología , COVID-19/prevención & control , Chlorocebus aethiops , Femenino , Humanos , Masculino , Mesocricetus/inmunología , Mesocricetus/virología , Ratones , Ratones Transgénicos , Profilaxis Posexposición , Profilaxis Pre-Exposición , SARS-CoV-2/genética , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Células Vero
5.
J Virol ; 98(3): e0120623, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38305154

RESUMEN

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with greater transmissibility or immune evasion properties has jeopardized the existing vaccine and antibody-based countermeasures. Here, we evaluated the efficacy of boosting pre-immune hamsters with protein nanoparticle vaccines (Novavax, Inc.) containing recombinant Prototype (Wuhan-1) or BA.5 S proteins against a challenge with the Omicron BA.5 variant of SARS-CoV-2. Serum antibody binding and neutralization titers were quantified before challenge, and viral loads were measured 3 days after challenge. Boosting with Prototype or BA.5 vaccine induced similar antibody binding responses against ancestral Wuhan-1 or BA.5 S proteins, and neutralizing activity of Omicron BA.1 and BA.5 variants. One and three months after vaccine boosting, hamsters were challenged with the Omicron BA.5 variant. Prototype and BA.5 vaccine-boosted hamsters had reduced viral infection in the nasal washes, nasal turbinates, and lungs compared to unvaccinated animals. Although no significant differences in virus load were detected between the Prototype and BA.5 vaccine-boosted animals, fewer breakthrough infections were detected in the BA.5-vaccinated hamsters. Thus, immunity induced by Prototype or BA.5 S protein nanoparticle vaccine boosting can protect against the Omicron BA.5 variant in the Syrian hamster model. IMPORTANCE: As SARS-CoV-2 continues to evolve, there may be a need to update the vaccines to match the newly emerging variants. Here, we compared the protective efficacy of the updated BA.5 and the original Wuhan-1 COVID-19 vaccine against a challenge with the BA.5 Omicron variant of SARS-CoV-2 in hamsters. Both vaccines induced similar levels of neutralizing antibodies against multiple variants of SARS-CoV-2. One and three months after the final immunization, hamsters were challenged with BA.5. No differences in protection against the BA.5 variant virus were observed between the two vaccines, although fewer breakthrough infections were detected in the BA.5-vaccinated hamsters. Together, our data show that both protein nanoparticle vaccines are effective against the BA.5 variant of SARS-CoV-2 but given the increased number of breakthrough infections and continued evolution, it is important to update the COVID-19 vaccine for long-term protection.


Asunto(s)
Vacunas contra la COVID-19 , Nanovacunas , SARS-CoV-2 , Animales , Cricetinae , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Infección Irruptiva/inmunología , Infección Irruptiva/prevención & control , Infección Irruptiva/virología , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/virología , Vacunas contra la COVID-19/inmunología , Mesocricetus/inmunología , Mesocricetus/virología , Nanovacunas/inmunología , SARS-CoV-2/inmunología , Inmunización Secundaria , Carga Viral
6.
J Virol ; 98(5): e0190323, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38593045

RESUMEN

We developed a novel class of peptidomimetic inhibitors targeting several host cell human serine proteases, including transmembrane protease serine 2 (TMPRSS2), matriptase, and hepsin. TMPRSS2 is a membrane-associated protease that is highly expressed in the upper and lower respiratory tracts and is utilized by SARS-CoV-2 and other viruses to proteolytically process their glycoproteins, enabling host cell entry, replication, and dissemination of new virus particles. We have previously shown that compound MM3122 exhibited subnanomolar potency against all three proteases and displayed potent antiviral effects against SARS-CoV-2 in a cell viability assay. Herein, we demonstrate that MM3122 potently inhibits viral replication in human lung epithelial cells and is also effective against the EG.5.1 variant of SARS-CoV-2. Furthermore, we evaluated MM3122 in a mouse model of COVID-19 and demonstrated that MM3122 administered intraperitoneally (IP) before (prophylactic) or after (therapeutic) SARS-CoV-2 infection had significant protective effects against weight loss and lung congestion and reduced pathology. Amelioration of COVID-19 disease was associated with a reduction in proinflammatory cytokine and chemokine production after SARS-CoV-2 infection. Prophylactic, but not therapeutic, administration of MM3122 also reduced virus titers in the lungs of SARS-CoV-2-infected mice. Therefore, MM3122 is a promising lead candidate small-molecule drug for the treatment and prevention of infections caused by SARS-CoV-2 and other coronaviruses. IMPORTANCE: SARS-CoV-2 and other emerging RNA coronaviruses are a present and future threat in causing widespread endemic and pandemic infection and disease. In this paper, we have shown that the novel host cell protease inhibitor, MM3122, blocks SARS-CoV-2 viral replication and is efficacious as both a prophylactic and a therapeutic drug for the treatment of COVID-19 given intraperitoneally in mice. Targeting host proteins and pathways in antiviral therapy is an underexplored area of research, but this approach promises to avoid drug resistance by the virus, which is common in current antiviral treatments.


Asunto(s)
Antivirales , Benzotiazoles , Tratamiento Farmacológico de COVID-19 , Oligopéptidos , SARS-CoV-2 , Inhibidores de Serina Proteinasa , Replicación Viral , Animales , Femenino , Humanos , Ratones , Antivirales/farmacología , Chlorocebus aethiops , COVID-19/virología , Modelos Animales de Enfermedad , Pulmón/virología , Pulmón/patología , Pulmón/efectos de los fármacos , Peptidomiméticos/farmacología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Serina Endopeptidasas/metabolismo , Inhibidores de Serina Proteinasa/farmacología , Inhibidores de Serina Proteinasa/uso terapéutico , Células Vero , Replicación Viral/efectos de los fármacos , Oligopéptidos/farmacología , Benzotiazoles/farmacología
7.
J Virol ; 97(9): e0062823, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37676002

RESUMEN

The continued evolution and emergence of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have resulted in challenges to vaccine and antibody efficacy. The emergence of each new variant necessitates the need to re-evaluate and refine animal models used for countermeasure testing. Here, we tested a recently circulating SARS-CoV-2 Omicron lineage variant, BQ.1.1, in multiple rodent models including K18-human ACE2 (hACE2) transgenic, C57BL/6J, and 129S2 mice, and Syrian golden hamsters. In contrast to a previously dominant BA.5.5 Omicron variant, inoculation of K18-hACE2 mice with BQ.1.1 resulted in substantial weight loss, a characteristic seen in pre-Omicron variants. BQ.1.1 also replicated to higher levels in the lungs of K18-hACE2 mice and caused greater lung pathology than the BA.5.5 variant. However, in C57BL/6J mice, 129S2 mice, and Syrian hamsters, BQ.1.1 did not cause increased respiratory tract infection or disease compared to animals administered BA.5.5. Moreover, the rates of direct contact or airborne transmission in hamsters were not significantly different after BQ.1.1 and BA.5.5 infections. Taken together, these data suggest that the BQ.1.1 Omicron variant has increased virulence in rodent species that express hACE2, possibly due to the acquisition of unique spike mutations relative to earlier Omicron variants. IMPORTANCE As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, there is a need to rapidly assess the efficacy of vaccines and antiviral therapeutics against newly emergent variants. To do so, the commonly used animal models must also be re-evaluated. Here, we determined the pathogenicity of the BQ.1.1 SARS-CoV-2 variant in multiple SARS-CoV-2 animal models including transgenic mice expressing human ACE2 (hACE2), two strains of conventional laboratory mice, and Syrian hamsters. While BQ.1.1 and BA.5.5 infection resulted in similar levels of viral burden and clinical disease in hamsters and the conventional strains of laboratory mice tested, increases in lung infection were detected in hACE2-expressing transgenic mice, which corresponded with greater levels of pro-inflammatory cytokines and lung pathology. Taken together, our data highlight important differences in two closely related Omicron SARS-CoV-2 variant strains and provide a foundation for evaluating countermeasures.


Asunto(s)
COVID-19 , Modelos Animales de Enfermedad , Mesocricetus , SARS-CoV-2 , Animales , Cricetinae , Humanos , Ratones , COVID-19/virología , Pulmón/patología , Pulmón/virología , Mesocricetus/virología , Ratones Endogámicos C57BL , Ratones Transgénicos , SARS-CoV-2/clasificación , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , Carga Viral , Virulencia
8.
J Virol ; 97(6): e0063523, 2023 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-37223945

RESUMEN

The stem-loop II motif (s2m) is an RNA structural element that is found in the 3' untranslated region (UTR) of many RNA viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Though the motif was discovered over 25 years ago, its functional significance is unknown. In order to understand the importance of s2m, we created viruses with deletions or mutations of the s2m by reverse genetics and also evaluated a clinical isolate harboring a unique s2m deletion. Deletion or mutation of the s2m had no effect on growth in vitro or on growth and viral fitness in Syrian hamsters in vivo. We also compared the secondary structure of the 3' UTR of wild-type and s2m deletion viruses using selective 2'-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) and dimethyl sulfate mutational profiling and sequencing (DMS-MaPseq). These experiments demonstrate that the s2m forms an independent structure and that its deletion does not alter the overall remaining 3'-UTR RNA structure. Together, these findings suggest that s2m is dispensable for SARS-CoV-2. IMPORTANCE RNA viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), contain functional structures to support virus replication, translation, and evasion of the host antiviral immune response. The 3' untranslated region of early isolates of SARS-CoV-2 contained a stem-loop II motif (s2m), which is an RNA structural element that is found in many RNA viruses. This motif was discovered over 25 years ago, but its functional significance is unknown. We created SARS-CoV-2 with deletions or mutations of the s2m and determined the effect of these changes on viral growth in tissue culture and in rodent models of infection. Deletion or mutation of the s2m element had no effect on growth in vitro or on growth and viral fitness in Syrian hamsters in vivo. We also observed no impact of the deletion on other known RNA structures in the same region of the genome. These experiments demonstrate that s2m is dispensable for SARS-CoV-2.


Asunto(s)
Motivos de Nucleótidos , SARS-CoV-2 , Animales , Cricetinae , Regiones no Traducidas 3'/genética , COVID-19/virología , Mesocricetus , Mutación , SARS-CoV-2/genética , Motivos de Nucleótidos/genética , ARN Viral/química , ARN Viral/genética
9.
PLoS Pathog ; 15(6): e1007790, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31194854

RESUMEN

Bourbon virus (BRBV) is an emerging tick-borne RNA virus in the orthomyxoviridae family that was discovered in 2014. Although fatal human cases of BRBV have been described, little is known about its pathogenesis, and no antiviral therapies or vaccines exist. We obtained serum from a fatal case in 2017 and successfully recovered the second human infectious isolate of BRBV. Next-generation sequencing of the St. Louis isolate of BRBV (BRBV-STL) showed >99% nucleotide identity to the original reference isolate. Using BRBV-STL, we developed a small animal model to study BRBV-STL tropism in vivo and evaluated the prophylactic and therapeutic efficacy of the experimental antiviral drug favipiravir against BRBV-induced disease. Infection of Ifnar1-/- mice lacking the type I interferon receptor, but not congenic wild-type animals, resulted in uniformly fatal disease 6 to 10 days after infection. RNA in situ hybridization and viral yield assays demonstrated a broad tropism of BRBV-STL with highest levels detected in liver and spleen. In vitro replication and polymerase activity of BRBV-STL were inhibited by favipiravir. Moreover, administration of favipiravir as a prophylaxis or as post-exposure therapy three days after infection prevented BRBV-STL-induced mortality in immunocompromised Ifnar1-/- mice. These results suggest that favipiravir may be a candidate treatment for humans who become infected with BRBV.


Asunto(s)
Amidas/farmacología , Antivirales/farmacología , Infecciones por Orthomyxoviridae/prevención & control , Pirazinas/farmacología , Thogotovirus/inmunología , Animales , Chlorocebus aethiops , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Noqueados , Infecciones por Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/patología , Receptor de Interferón alfa y beta/deficiencia , Receptor de Interferón alfa y beta/inmunología , Thogotovirus/patogenicidad , Células Vero , Tropismo Viral/efectos de los fármacos , Tropismo Viral/genética , Tropismo Viral/inmunología
10.
J Virol ; 93(22)2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31462571

RESUMEN

Type III interferon (IFN), or IFN lambda (IFN-λ), is an essential component of the innate immune response to mucosal viral infections. In both the intestine and the lung, signaling via the IFN-λ receptor (IFNLR) controls clinically important viral pathogens, including influenza virus, norovirus, and rotavirus. While it is thought that IFN-λ cytokines are the exclusive ligands for signaling through IFNLR, it is not known whether genetic ablation of these cytokines phenotypically recapitulates disruption of the receptor. Here, we report the serendipitous establishment of Ifnl2-/- Ifnl3-/- mice, which lack all known functional murine IFN-λ cytokines. We demonstrate that, like Ifnlr1-/- mice lacking IFNLR signaling, these mice display defective control of murine norovirus, reovirus, and influenza virus and therefore genocopy Ifnlr1-/- mice. Thus, for regulation of viral infections at mucosal sites of both the intestine and lung, signaling via IFNLR can be fully explained by the activity of known cytokines IFN-λ2 and IFN-λ3. Our results confirm the current understanding of ligand-receptor interactions for type III IFN signaling and highlight the importance of this pathway in regulation of mucosal viral pathogens.IMPORTANCE Type III interferons are potent antiviral cytokines important for regulation of viruses that infect at mucosal surfaces. Studies using mice lacking the Ifnlr1 gene encoding the type III interferon receptor have demonstrated that signaling through this receptor is critical for protection against influenza virus, norovirus, and reovirus. Using a genetic approach to disrupt murine type III interferon cytokine genes Ifnl2 and Ifnl3, we found that mice lacking these cytokines fully recapitulate the impaired control of viruses observed in mice lacking Ifnlr1 Our results support the idea of an exclusive role for known type III interferon cytokines in signaling via IFNLR to mediate antiviral effects at mucosal surfaces. These findings emphasize the importance of type III interferons in regulation of a variety of viral pathogens and provide important genetic evidence to support our understanding of the ligand-receptor interactions in this pathway.


Asunto(s)
Citocinas/genética , Interferones/genética , Interleucinas/genética , Animales , Línea Celular , Citocinas/metabolismo , Femenino , Inmunidad Innata , Interferones/metabolismo , Interleucinas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Membrana Mucosa/metabolismo , Receptores de Interferón/genética , Receptores de Interferón/metabolismo , Virosis/metabolismo , Interferón lambda
11.
PLoS Pathog ; 14(4): e1007001, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29698474

RESUMEN

Pro-inflammatory cytokinemia is a hallmark of highly pathogenic H5N1 influenza virus (IAV) disease yet little is known about the role of host proteins in modulating a pathogenic innate immune response. The host Interferon Induced Protein 35 (Ifi35) has been implicated in increased susceptibility to H5N1-IAV infection. Here, we show that Ifi35 deficiency leads to reduced morbidity in mouse models of highly pathogenic H5N1- and pandemic H1N1-IAV infection. Reduced weight loss in Ifi35-/- mice following H5N1-IAV challenge was associated with reduced cellular infiltration and decreased production of specific cytokines and chemokines including IL-12p40. Expression of Ifi35 by the hematopoietic cell compartment in bone-marrow chimeric mice contributed to increased immune cell recruitment and IL-12p40 production. In addition, Ifi35 deficient primary macrophages produce less IL-12p40 following TLR-3, TLR-4, and TLR-7 stimulation in vitro. Decreased levels of IL-12p40 and its homodimer, IL-12p80, were found in bronchoalveolar lavage fluid of H5N1-IAV infected Ifi35 deficient mice. Specific antibody blockade of IL-12p80 ameliorated weight loss and reduced cellular infiltration following H5N1-IAV infection in wild-type mice; suggesting that increased levels of IL-12p80 alters the immune response to promote inflammation and IAV disease. These data establish a role for Ifi35 in modulating cytokine production and exacerbating inflammation during IAV infection.


Asunto(s)
Inmunidad Innata/inmunología , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Subunidad p40 de la Interleucina-12/metabolismo , Péptidos y Proteínas de Señalización Intracelular/fisiología , Infecciones por Orthomyxoviridae/virología , Neumonía/virología , Animales , Quimiocinas/metabolismo , Citocinas/metabolismo , Dimerización , Femenino , Subunidad p40 de la Interleucina-12/química , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infecciones por Orthomyxoviridae/metabolismo , Infecciones por Orthomyxoviridae/patología , Neumonía/metabolismo , Neumonía/patología
12.
J Immunol ; 192(8): 3465-9, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24639356

RESUMEN

CD28 is a critical regulator of T cell function, augmenting proliferation, cytokine secretion, and cell survival. Our previous work using knockin mice expressing point mutations in CD28 demonstrated that the distal proline motif was primarily responsible for much of CD28 function, whereas in marked contrast to prior studies, mutation of the PI3K-binding motif had little discernible effect. In this study, we examined the phenotype of mice in which both motifs are simultaneously mutated. We found that mutation of the PYAP motif unmasks a critical role for the proximal tyrosine motif in regulating T cell proliferation and expression of Bcl-xL but not cytokine secretion. In addition, we demonstrated that, although function is more severely impaired in the double mutant than in either single mutant, there remained residual CD28-dependent responses, definitively establishing that additional motifs can partially mediate CD28 function.


Asunto(s)
Secuencias de Aminoácidos , Antígenos CD28/genética , Antígenos CD28/inmunología , Mutación , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Proteína bcl-X/genética , Secuencia de Aminoácidos , Animales , Antígenos CD28/química , Proliferación Celular , Citocinas/biosíntesis , Activación de Linfocitos , Ratones , Ratones Transgénicos , Proteína bcl-X/metabolismo
13.
J Immunol ; 191(6): 3082-9, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23956428

RESUMEN

The CD28 costimulatory receptor is a critical regulator of T cell function, making it an attractive therapeutic target for the treatment of immune-mediated diseases. CTLA4Ig, now approved for use in humans, prevents naive T cell activation by binding to B7 proteins and blocking engagement of CD28. However, CTLA4Ig suppresses inflammation even if administered when disease is established, suggesting alternative mechanisms. We identified a novel, CD28-independent mechanism by which CTLA4Ig inhibits activated T cells. We show that in vitro, CTLA4Ig synergizes with NO from bone marrow-derived macrophages to inhibit T cell proliferation. Depletion of regulatory T cells (Tregs) or interference with TGF-ß signaling abrogated the inhibitory effect of CTLA4Ig. Parallel in vivo experiments using an allergic airway inflammation model demonstrated that this novel mechanism required both macrophages and regulatory T cells. Furthermore, CTLA4Ig was ineffective in SMAD3-deficient mice, supporting a requirement for TGF-ß signaling. Thus, in addition to preventing naive T cells from being fully activated, CTLA4Ig can turn off already activated effector T cells by an NO/regulatory T cell/TGF-ß-dependent pathway. This mechanism is similar to cell-extrinsic effects of endogenous CTLA4 and may be particularly important in the ability of CTLA4Ig to treat chronic inflammatory disease.


Asunto(s)
Antiinflamatorios/farmacología , Antígeno CTLA-4/inmunología , Inmunoglobulina G/farmacología , Activación de Linfocitos/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Factor de Crecimiento Transformador beta/inmunología , Traslado Adoptivo , Animales , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Citometría de Flujo , Inmunoconjugados/farmacología , Activación de Linfocitos/inmunología , Macrófagos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Recombinantes de Fusión/farmacología , Hipersensibilidad Respiratoria/inmunología , Linfocitos T Reguladores/efectos de los fármacos
14.
bioRxiv ; 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37205409

RESUMEN

The continued evolution and emergence of novel SARS-CoV-2 variants has resulted in challenges to vaccine and antibody efficacy. The emergence of each new variant necessitates the need to re-evaluate and refine animal models used for countermeasure testing. Here, we tested a currently circulating SARS-CoV-2 Omicron lineage variant, BQ.1.1, in multiple rodent models including K18-hACE2 transgenic, C57BL/6J, and 129S2 mice, and Syrian golden hamsters. In contrast to a previously dominant BA.5.5 Omicron variant, inoculation of K18-hACE2 mice with BQ.1.1 resulted in a substantial weight loss, a characteristic seen in pre-Omicron variants. BQ.1.1 also replicated to higher levels in the lungs of K18-hACE2 mice and caused greater lung pathology than the BA.5.5 variant. However, C57BL/6J mice, 129S2 mice, and Syrian hamsters inoculated with BQ.1.1 showed no differences in respiratory tract infection or disease compared to animals administered BA.5.5. Airborne or direct contact transmission in hamsters was observed more frequently after BQ.1.1 than BA.5.5 infection. Together, these data suggest that the BQ.1.1 Omicron variant has increased virulence in some rodent species, possibly due to the acquisition of unique spike mutations relative to other Omicron variants. IMPORTANCE: As SARS-CoV-2 continues to evolve, there is a need to rapidly assess the efficacy of vaccines and antiviral therapeutics against newly emergent variants. To do so, the commonly used animal models must also be reevaluated. Here, we determined the pathogenicity of the circulating BQ.1.1 SARS-CoV-2 variant in multiple SARS-CoV-2 animal models including transgenic mice expressing human ACE2, two strains of conventional laboratory mice, and Syrian hamsters. While BQ.1.1 infection resulted in similar levels of viral burden and clinical disease in the conventional laboratory mice tested, increases in lung infection were detected in human ACE2-expressing transgenic mice, which corresponded with greater levels of pro-inflammatory cytokines and lung pathology. Moreover, we observed a trend towards greater animal-to-animal transmission of BQ.1.1 than BA.5.5 in Syrian hamsters. Together, our data highlight important differences in two closely related Omicron SARS-CoV-2 variant strains and provide a foundation for evaluating countermeasures.

15.
bioRxiv ; 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36993345

RESUMEN

The stem-loop II motif (s2m) is a RNA structural element that is found in the 3' untranslated region (UTR) of many RNA viruses including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Though the motif was discovered over twenty-five years ago, its functional significance is unknown. In order to understand the importance of s2m, we created viruses with deletions or mutations of the s2m by reverse genetics and also evaluated a clinical isolate harboring a unique s2m deletion. Deletion or mutation of the s2m had no effect on growth in vitro , or growth and viral fitness in Syrian hamsters in vivo . We also compared the secondary structure of the 3' UTR of wild type and s2m deletion viruses using SHAPE-MaP and DMS-MaPseq. These experiments demonstrate that the s2m forms an independent structure and that its deletion does not alter the overall remaining 3'UTR RNA structure. Together, these findings suggest that s2m is dispensable for SARS-CoV-2. IMPORTANCE: RNA viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contain functional structures to support virus replication, translation and evasion of the host antiviral immune response. The 3' untranslated region of early isolates of SARS-CoV-2 contained a stem-loop II motif (s2m), which is a RNA structural element that is found in many RNA viruses. This motif was discovered over twenty-five years ago, but its functional significance is unknown. We created SARS-CoV-2 with deletions or mutations of the s2m and determined the effect of these changes on viral growth in tissue culture and in rodent models of infection. Deletion or mutation of the s2m element had no effect on growth in vitro , or growth and viral fitness in Syrian hamsters in vivo . We also observed no impact of the deletion on other known RNA structures in the same region of the genome. These experiments demonstrate that the s2m is dispensable for SARS-CoV-2.

16.
Nat Commun ; 14(1): 3692, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37429842

RESUMEN

Real-time surveillance of airborne SARS-CoV-2 virus is a technological gap that has eluded the scientific community since the beginning of the COVID-19 pandemic. Offline air sampling techniques for SARS-CoV-2 detection suffer from longer turnaround times and require skilled labor. Here, we present a proof-of-concept pathogen Air Quality (pAQ) monitor for real-time (5 min time resolution) direct detection of SARS-CoV-2 aerosols. The system synergistically integrates a high flow (~1000 lpm) wet cyclone air sampler and a nanobody-based ultrasensitive micro-immunoelectrode biosensor. The wet cyclone showed comparable or better virus sampling performance than commercially available samplers. Laboratory experiments demonstrate a device sensitivity of 77-83% and a limit of detection of 7-35 viral RNA copies/m3 of air. Our pAQ monitor is suited for point-of-need surveillance of SARS-CoV-2 variants in indoor environments and can be adapted for multiplexed detection of other respiratory pathogens of interest. Widespread adoption of such technology could assist public health officials with implementing rapid disease control measures.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , COVID-19/epidemiología , Pandemias , Aerosoles y Gotitas Respiratorias , Monitoreo del Ambiente
17.
ACS Sens ; 8(8): 3023-3031, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37498298

RESUMEN

Airborne transmission via virus-laden aerosols is a dominant route for the transmission of respiratory diseases, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Direct, non-invasive screening of respiratory virus aerosols in patients has been a long-standing technical challenge. Here, we introduce a point-of-care testing platform that directly detects SARS-CoV-2 aerosols in as little as two exhaled breaths of patients and provides results in under 60 s. It integrates a hand-held breath aerosol collector and a llama-derived, SARS-CoV-2 spike-protein specific nanobody bound to an ultrasensitive micro-immunoelectrode biosensor, which detects the oxidation of tyrosine amino acids present in SARS-CoV-2 viral particles. Laboratory and clinical trial results were within 20% of those obtained using standard testing methods. Importantly, the electrochemical biosensor directly detects the virus itself, as opposed to a surrogate or signature of the virus, and is sensitive to as little as 10 viral particles in a sample. Our platform holds the potential to be adapted for multiplexed detection of different respiratory viruses. It provides a rapid and non-invasive alternative to conventional viral diagnostics.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Sistemas de Atención de Punto , Aerosoles y Gotitas Respiratorias , Espiración
18.
J Exp Med ; 203(9): 2121-33, 2006 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-16908623

RESUMEN

Activation of naive T cells requires the integration of signals through the antigen receptor and CD28. Although there is agreement on the importance of CD28, there remains controversy on the mechanism by which CD28 regulates T cell function. We have generated a gene-targeted knockin mouse expressing a mutation in the C-terminal proline-rich region of the cytoplasmic tail of CD28. Our analysis conclusively showed that this motif is essential for CD28-dependent regulation of interleukin 2 secretion and proliferation. In vivo analysis revealed that mutation of this motif-dissociated CD28-dependent regulation of cellular and humoral responses in an allergic airway inflammation model. Furthermore, we find an important gene dosage effect on the phenotype of the mutation and provide a mechanistic explanation for the conflicting data on the significance of this motif in CD28 function.


Asunto(s)
Formación de Anticuerpos , Antígenos CD28/inmunología , Interleucina-2/metabolismo , Prolina/metabolismo , Linfocitos T/inmunología , Secuencia de Aminoácidos , Animales , Hiperreactividad Bronquial/inmunología , Antígenos CD28/química , Antígenos CD28/genética , Antígenos CD28/metabolismo , Comunicación Celular , Proliferación Celular , Relación Dosis-Respuesta Inmunológica , Centro Germinal/citología , Centro Germinal/inmunología , Inmunoglobulina G/metabolismo , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Mutación , Prolina/química , Transducción de Señal , Proteína bcl-X/metabolismo
19.
Med ; 3(5): 309-324.e6, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35584653

RESUMEN

BACKGROUND: Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019, viral variants with greater transmissibility or immune-evasion properties have arisen, which could jeopardize recently deployed vaccine- and antibody-based countermeasures. METHODS: Here, we evaluated in mice and hamsters the efficacy of a pre-clinical version of the Moderna mRNA vaccine (mRNA-1273) and the Johnson & Johnson recombinant adenoviral-vectored vaccine (Ad26.COV2.S) against the B.1.621 (Mu) variant of SARS-CoV-2, which contains spike mutations T95I, Y144S, Y145N, R346K, E484K, N501Y, D614G, P681H, and D950N. FINDINGS: Immunization of 129S2 and K18-human ACE2 transgenic mice with the mRNA-1273 vaccine protected against weight loss, lung infection, and lung pathology after challenge with the B.1.621 or WA1/2020 N501Y/D614G SARS-CoV-2 strain. Similarly, immunization of 129S2 mice and Syrian hamsters with a high dose of Ad26.COV2.S reduced lung infection after B.1.621 virus challenge. CONCLUSIONS: Thus, immunity induced by the mRNA-1273 or Ad26.COV2.S vaccine can protect against the B.1.621 variant of SARS-CoV-2 in multiple animal models. FUNDING: This study was supported by the NIH (R01 AI157155 and U01 AI151810), NIAID Centers of Excellence for Influenza Research and Response [CEIRR] contracts 75N93021C00014 and 75N93021C00016, and the Collaborative Influenza Vaccine Innovation Centers [CIVIC] contract 75N93019C00051. It was also supported, in part, by the National Institutes of Allergy and Infectious Diseases Center for Research on Influenza Pathogenesis (HHSN272201400008C) and the Japan Program for Infectious Diseases Research and Infrastructure (JP21wm0125002) from the Japan Agency for Medical Research and Development (AMED).


Asunto(s)
Vacuna nCoV-2019 mRNA-1273 , COVID-19 , Gripe Humana , Vacunas de ARNm , Vacuna nCoV-2019 mRNA-1273/inmunología , Vacuna nCoV-2019 mRNA-1273/farmacología , Ad26COVS1 , Animales , Anticuerpos Neutralizantes , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/virología , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/farmacología , Cricetinae , Humanos , Ratones , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas de ARNm/inmunología , Vacunas de ARNm/farmacología
20.
bioRxiv ; 2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35547847

RESUMEN

The stem-loop II motif (s2m) is an RNA element present in viruses from divergent viral families, including astroviruses and coronaviruses, but its functional significance is unknown. We created deletions or substitutions of the s2m in astrovirus VA1 (VA1), classic human astrovirus 1 (HAstV1) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). For VA1, recombinant virus could not be rescued upon partial deletion of the s2m or substitutions of G-C base pairs. Compensatory substitutions that restored the G-C base-pair enabled recovery of VA1. For HAstV1, a partial deletion of the s2m resulted in decreased viral titers compared to wild-type virus, and reduced activity in a replicon system. In contrast, deletion or mutation of the SARS-CoV-2 s2m had no effect on the ability to rescue the virus, growth in vitro , or growth in Syrian hamsters. Our study demonstrates the importance of the s2m is virus-dependent.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda