Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(25): 12390-12399, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31147463

RESUMEN

Long-range gene regulation involves physical proximity between enhancers and promoters to generate precise patterns of gene expression in space and time. However, in some cases, proximity coincides with gene activation, whereas, in others, preformed topologies already exist before activation. In this study, we investigate the preformed configuration underlying the regulation of the Shh gene by its unique limb enhancer, the ZRS, in vivo during mouse development. Abrogating the constitutive transcription covering the ZRS region led to a shift within the Shh-ZRS contacts and a moderate reduction in Shh transcription. Deletion of the CTCF binding sites around the ZRS resulted in the loss of the Shh-ZRS preformed interaction and a 50% decrease in Shh expression but no phenotype, suggesting an additional, CTCF-independent mechanism of promoter-enhancer communication. This residual activity, however, was diminished by combining the loss of CTCF binding with a hypomorphic ZRS allele, resulting in severe Shh loss of function and digit agenesis. Our results indicate that the preformed chromatin structure of the Shh locus is sustained by multiple components and acts to reinforce enhancer-promoter communication for robust transcription.


Asunto(s)
Cromatina/metabolismo , Extremidades/embriología , Proteínas Hedgehog/genética , Transcripción Genética , Animales , Sitios de Unión , Factor de Unión a CCCTC/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Regulación hacia Abajo , Elementos de Facilitación Genéticos , Proteínas de la Membrana/genética , Ratones , Regiones Promotoras Genéticas , Cohesinas
2.
PLoS Biol ; 9(1): e1000582, 2011 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-21267068

RESUMEN

Ascertaining when and where genes are expressed is of crucial importance to understanding or predicting the physiological role of genes and proteins and how they interact to form the complex networks that underlie organ development and function. It is, therefore, crucial to determine on a genome-wide level, the spatio-temporal gene expression profiles at cellular resolution. This information is provided by colorimetric RNA in situ hybridization that can elucidate expression of genes in their native context and does so at cellular resolution. We generated what is to our knowledge the first genome-wide transcriptome atlas by RNA in situ hybridization of an entire mammalian organism, the developing mouse at embryonic day 14.5. This digital transcriptome atlas, the Eurexpress atlas (http://www.eurexpress.org), consists of a searchable database of annotated images that can be interactively viewed. We generated anatomy-based expression profiles for over 18,000 coding genes and over 400 microRNAs. We identified 1,002 tissue-specific genes that are a source of novel tissue-specific markers for 37 different anatomical structures. The quality and the resolution of the data revealed novel molecular domains for several developing structures, such as the telencephalon, a novel organization for the hypothalamus, and insight on the Wnt network involved in renal epithelial differentiation during kidney development. The digital transcriptome atlas is a powerful resource to determine co-expression of genes, to identify cell populations and lineages, and to identify functional associations between genes relevant to development and disease.


Asunto(s)
Bases de Datos Genéticas , Perfilación de la Expresión Génica , Ratones/anatomía & histología , Ratones/genética , Animales , Atlas como Asunto , Embrión de Mamíferos , Internet , Ratones/embriología , Ratones Endogámicos C57BL , Especificidad de Órganos
3.
Nat Genet ; 54(7): 1026-1036, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35817979

RESUMEN

Vertebrate genomes organize into topologically associating domains, delimited by boundaries that insulate regulatory elements from nontarget genes. However, how boundary function is established is not well understood. Here, we combine genome-wide analyses and transgenic mouse assays to dissect the regulatory logic of clustered-CCCTC-binding factor (CTCF) boundaries in vivo, interrogating their function at multiple levels: chromatin interactions, transcription and phenotypes. Individual CTCF binding site (CBS) deletions revealed that the characteristics of specific sites can outweigh other factors such as CBS number and orientation. Combined deletions demonstrated that CBSs cooperate redundantly and provide boundary robustness. We show that divergent CBS signatures are not strictly required for effective insulation and that chromatin loops formed by nonconvergently oriented sites could be mediated by a loop interference mechanism. Further, we observe that insulation strength constitutes a quantitative modulator of gene expression and phenotypes. Our results highlight the modular nature of boundaries and their control over developmental processes.


Asunto(s)
Cromatina , Estudio de Asociación del Genoma Completo , Animales , Sitios de Unión/genética , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Cromatina/genética , Cromosomas/metabolismo , Genoma/genética , Ratones
4.
J Clin Invest ; 115(4): 900-9, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15841179

RESUMEN

Short digits (Dsh) is a radiation-induced mouse mutant. Homozygous mice are characterized by multiple defects strongly resembling those resulting from Sonic hedgehog (Shh) inactivation. Heterozygous mice show a limb reduction phenotype with fusion and shortening of the proximal and middle phalanges in all digits, similar to human brachydactyly type A1, a condition caused by mutations in Indian hedgehog (IHH). We mapped Dsh to chromosome 5 in a region containing Shh and were able to demonstrate an inversion comprising 11.7 Mb. The distal breakpoint is 13.298 kb upstream of Shh, separating the coding sequence from several putative regulatory elements identified by interspecies comparison. The inversion results in almost complete downregulation of Shh expression during E9.5-E12.5, explaining the homozygous phenotype. At E13.5 and E14.5, however, Shh is upregulated in the phalangeal anlagen of Dsh/+ mice, at a time point and in a region where WT Shh is never expressed. The dysregulation of Shh expression causes the local upregulation of hedgehog target genes such as Gli1-3, patched, and Pthlh, as well as the downregulation of Ihh and Gdf5. This results in shortening of the digits through an arrest of chondrocyte differentiation and the disruption of joint development.


Asunto(s)
Inversión Cromosómica , Deformidades Congénitas del Pie , Pie , Regulación del Desarrollo de la Expresión Génica , Transactivadores/genética , Transactivadores/metabolismo , Animales , Cromosomas Humanos Par 5 , Embrión de Mamíferos/anatomía & histología , Embrión de Mamíferos/fisiología , Pie/anatomía & histología , Pie/crecimiento & desarrollo , Proteínas Hedgehog , Humanos , Hibridación in Situ , Articulaciones/anatomía & histología , Articulaciones/crecimiento & desarrollo , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Morfogénesis , Osteogénesis/fisiología , Fenotipo
5.
Nat Genet ; 49(10): 1539-1545, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28846100

RESUMEN

Copy number variations (CNVs) often include noncoding sequences and putative enhancers, but how these rearrangements induce disease is poorly understood. Here we investigate CNVs involving the regulatory landscape of IHH (encoding Indian hedgehog), which cause multiple, highly localized phenotypes including craniosynostosis and synpolydactyly. We show through transgenic reporter and genome-editing studies in mice that Ihh is regulated by a constellation of at least nine enhancers with individual tissue specificities in the digit anlagen, growth plates, skull sutures and fingertips. Consecutive deletions, resulting in growth defects of the skull and long bones, showed that these enhancers function in an additive manner. Duplications, in contrast, caused not only dose-dependent upregulation but also misexpression of Ihh, leading to abnormal phalanges, fusion of sutures and syndactyly. Thus, precise spatiotemporal control of developmental gene expression is achieved by complex multipartite enhancer ensembles. Alterations in the composition of such clusters can result in gene misexpression and disease.


Asunto(s)
Enfermedades del Desarrollo Óseo/genética , Elementos de Facilitación Genéticos/genética , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Hedgehog/fisiología , Osteogénesis/genética , Animales , Secuencia de Bases , Variaciones en el Número de Copia de ADN , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Deformidades Congénitas del Pie/genética , Eliminación de Gen , Dosificación de Gen , Duplicación de Gen , Técnicas de Inactivación de Genes , Genes Reporteros , Proteínas Hedgehog/deficiencia , Proteínas Hedgehog/genética , Ratones , Ratones Endogámicos C57BL , Polidactilia/genética , Secuencias Reguladoras de Ácidos Nucleicos , Análisis de Secuencia de ADN , Cráneo/anomalías , Transcripción Genética
6.
Gene Expr Patterns ; 6(8): 826-34, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16554187

RESUMEN

Odd-skipped genes encode zinc-finger transcription factors with widespread roles in embryonic development. In Drosophila, odd-skipped acts as a pair-rule gene, while its orthologous gene in Caenorhabditis elegans is involved in gut development. In mammals two paralogs exist, Osr1 and Osr2, with functions described in heart and urogenital, and in secondary palate development, respectively. As the chicken embryo is a widely used system for analysing gene function in vivo, we determined the expression pattern of the two chicken orthologues, cOsr1 and cOsr2, during embryonic development. We demonstrate expression of both genes in a variety of organs and structures, such as kidney, eye, branchial arches and dermis. Both genes show a highly dynamic expression pattern with partially overlapping, but mostly distinct domains of expression. Special emphasis in this study was laid on the investigation of cOsr1 and cOsr2 in limb development, where we compared their expression pattern with the expression of Osr1 and Osr2 in the mouse.


Asunto(s)
Embrión de Pollo/metabolismo , Desarrollo Embrionario/fisiología , Perfilación de la Expresión Génica/métodos , Factores de Transcripción/metabolismo , Animales , Animales Modificados Genéticamente , Dermis/embriología , Dermis/metabolismo , Embrión de Mamíferos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Cabeza/embriología , Corazón/embriología , Cápsula Articular/embriología , Cápsula Articular/metabolismo , Riñón/embriología , Riñón/metabolismo , Esbozos de los Miembros/metabolismo , Ratones/embriología , Ratones Noqueados , Miocardio/metabolismo , Somitos/metabolismo
7.
Dev Dyn ; 235(12): 3456-65, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17061261

RESUMEN

Ror2 is a receptor tyrosine kinase mutated in the human syndromes Brachydactyly type B (BDB) and recessive Robinow syndrome (RS). In this study, we used the chick as a model to investigate the role of Ror2 in skeletogenesis and to elucidate the functional consequences of Ror2 mutations. For this purpose, we cloned chicken Ror2 and analyzed its expression pattern at various embryonic stages by in situ hybridization and immunolabeling. We document expression of cRor2 in several organs, including mesonephros, heart, nervous system, intestine and cartilage. The high conservation of expression when compared with the mouse underlines the validity of the chick as a model system. Using replication-competent retroviral vector-mediated overexpression, we analyzed the functional consequences of truncating BDB and RS mutations in the developing chick limb. Overexpression of Ror2 mutants led to a disturbance of growth plate architecture and a severe block of chondrocyte differentiation, demonstrating the functional importance of Ror2 in skeletogenesis.


Asunto(s)
Desarrollo Óseo/genética , Mutación , Proteínas Tirosina Quinasas Receptoras/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Desarrollo Óseo/fisiología , Proteínas de Caenorhabditis elegans , Diferenciación Celular , Embrión de Pollo , Condrocitos/citología , Condrocitos/enzimología , Clonación Molecular , Sondas de ADN/genética , Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Humanos , Hibridación in Situ , Deformidades Congénitas de las Extremidades/enzimología , Deformidades Congénitas de las Extremidades/genética , Datos de Secuencia Molecular , Filogenia , Receptores Huérfanos Similares al Receptor Tirosina Quinasa , Eliminación de Secuencia , Homología de Secuencia de Aminoácido , Síndrome
8.
Dev Dyn ; 229(2): 400-10, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14745966

RESUMEN

Robinow syndrome (RS) is a human dwarfism syndrome characterized by mesomelic limb shortening, vertebral and craniofacial malformations and small external genitals. We have analyzed Ror2(-/-) mice as a model for the developmental pathology of RS. Our results demonstrate that vertebral malformations in Ror2(-/-) mice are due to reductions in the presomitic mesoderm and defects in somitogenesis. Mesomelic limb shortening in Ror2(-/-) mice is a consequence of perturbed chondrocyte differentiation. Moreover, we show that the craniofacial phenotype is caused by a midline outgrowth defect. Ror2 expression in the genital tubercle and its reduced size in Ror2(-/-) mice makes it likely that Ror2 is involved in genital development. In conclusion, our findings suggest that Ror2 is essential at multiple sites during development. The Ror2(-/-) mouse provides a suitable model that may help to explain many of the underlying developmental malformations in individuals with Robinow syndrome.


Asunto(s)
Modelos Animales de Enfermedad , Enanismo/genética , Proteínas Tirosina Quinasas Receptoras/genética , Animales , Trastornos de los Cromosomas/embriología , Trastornos de los Cromosomas/patología , Mapeo Cromosómico , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/patología , Enanismo/patología , Embrión de Mamíferos/anomalías , Embrión de Mamíferos/citología , Eliminación de Gen , Genitales/patología , Genotipo , Humanos , Deformidades Congénitas de las Extremidades/genética , Deformidades Congénitas de las Extremidades/patología , Ratones , Ratones Noqueados , Fenotipo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores Huérfanos Similares al Receptor Tirosina Quinasa , Somitos/patología , Síndrome
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda