Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Brain ; 147(7): 2496-2506, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38325327

RESUMEN

We evaluated whether spike ripples, the combination of epileptiform spikes and ripples, provide a reliable and improved biomarker for the epileptogenic zone compared with other leading interictal biomarkers in a multicentre, international study. We first validated an automated spike ripple detector on intracranial EEG recordings. We then applied this detector to subjects from four centres who subsequently underwent surgical resection with known 1-year outcomes. We evaluated the spike ripple rate in subjects cured after resection [International League Against Epilepsy Class 1 outcome (ILAE 1)] and those with persistent seizures (ILAE 2-6) across sites and recording types. We also evaluated available interictal biomarkers: spike, spike-gamma, wideband high frequency oscillation (HFO, 80-500 Hz), ripple (80-250 Hz) and fast ripple (250-500 Hz) rates using previously validated automated detectors. The proportion of resected events was computed and compared across subject outcomes and biomarkers. Overall, 109 subjects were included. Most spike ripples were removed in subjects with ILAE 1 outcome (P < 0.001), and this was qualitatively observed across all sites and for depth and subdural electrodes (P < 0.001 and P < 0.001, respectively). Among ILAE 1 subjects, the mean spike ripple rate was higher in the resected volume (0.66/min) than in the non-removed tissue (0.08/min, P < 0.001). A higher proportion of spike ripples were removed in subjects with ILAE 1 outcomes compared with ILAE 2-6 outcomes (P = 0.06). Among ILAE 1 subjects, the proportion of spike ripples removed was higher than the proportion of spikes (P < 0.001), spike-gamma (P < 0.001), wideband HFOs (P < 0.001), ripples (P = 0.009) and fast ripples (P = 0.009) removed. At the individual level, more subjects with ILAE 1 outcomes had the majority of spike ripples removed (79%, 38/48) than spikes (69%, P = 0.12), spike-gamma (69%, P = 0.12), wideband HFOs (63%, P = 0.03), ripples (45%, P = 0.01) or fast ripples (36%, P < 0.001) removed. Thus, in this large, multicentre cohort, when surgical resection was successful, the majority of spike ripples were removed. Furthermore, automatically detected spike ripples localize the epileptogenic tissue better than spikes, spike-gamma, wideband HFOs, ripples and fast ripples.


Asunto(s)
Electrocorticografía , Humanos , Masculino , Femenino , Adulto , Electrocorticografía/métodos , Adulto Joven , Adolescente , Electroencefalografía/métodos , Persona de Mediana Edad , Epilepsia/fisiopatología , Epilepsia/cirugía , Niño , Ondas Encefálicas/fisiología , Encéfalo/fisiopatología
2.
J Neurosci ; 43(24): 4434-4447, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37188514

RESUMEN

The human ventral temporal cortex (VTC) is highly connected to integrate visual perceptual inputs with feedback from cognitive and emotional networks. In this study, we used electrical brain stimulation to understand how different inputs from multiple brain regions drive unique electrophysiological responses in the VTC. We recorded intracranial EEG data in 5 patients (3 female) implanted with intracranial electrodes for epilepsy surgery evaluation. Pairs of electrodes were stimulated with single-pulse electrical stimulation, and corticocortical evoked potential responses were measured at electrodes in the collateral sulcus and lateral occipitotemporal sulcus of the VTC. Using a novel unsupervised machine learning method, we uncovered 2-4 distinct response shapes, termed basis profile curves (BPCs), at each measurement electrode in the 11-500 ms after stimulation interval. Corticocortical evoked potentials of unique shape and high amplitude were elicited following stimulation of several regions and classified into a set of four consensus BPCs across subjects. One of the consensus BPCs was primarily elicited by stimulation of the hippocampus; another by stimulation of the amygdala; a third by stimulation of lateral cortical sites, such as the middle temporal gyrus; and the final one by stimulation of multiple distributed sites. Stimulation also produced sustained high-frequency power decreases and low-frequency power increases that spanned multiple BPC categories. Characterizing distinct shapes in stimulation responses provides a novel description of connectivity to the VTC and reveals significant differences in input from cortical and limbic structures.SIGNIFICANCE STATEMENT Disentangling the numerous input influences on highly connected areas in the brain is a critical step toward understanding how brain networks work together to coordinate human behavior. Single-pulse electrical stimulation is an effective tool to accomplish this goal because the shapes and amplitudes of signals recorded from electrodes are informative of the synaptic physiology of the stimulation-driven inputs. We focused on targets in the ventral temporal cortex, an area strongly implicated in visual object perception. By using a data-driven clustering algorithm, we identified anatomic regions with distinct input connectivity profiles to the ventral temporal cortex. Examining high-frequency power changes revealed possible modulation of excitability at the recording site induced by electrical stimulation of connected regions.


Asunto(s)
Corteza Cerebral , Lóbulo Temporal , Humanos , Femenino , Lóbulo Temporal/fisiología , Potenciales Evocados/fisiología , Hipocampo , Mapeo Encefálico/métodos , Estimulación Eléctrica/métodos
3.
J Neurosci ; 43(39): 6697-6711, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37620159

RESUMEN

Stimulation-evoked signals are starting to be used as biomarkers to indicate the state and health of brain networks. The human limbic network, often targeted for brain stimulation therapy, is involved in emotion and memory processing. Previous anatomic, neurophysiological, and functional studies suggest distinct subsystems within the limbic network (Rolls, 2015). Studies using intracranial electrical stimulation, however, have emphasized the similarities of the evoked waveforms across the limbic network. We test whether these subsystems have distinct stimulation-driven signatures. In eight patients (four male, four female) with drug-resistant epilepsy, we stimulated the limbic system with single-pulse electrical stimulation. Reliable corticocortical evoked potentials (CCEPs) were measured between hippocampus and the posterior cingulate cortex (PCC) and between the amygdala and the anterior cingulate cortex (ACC). However, the CCEP waveform in the PCC after hippocampal stimulation showed a unique and reliable morphology, which we term the "limbic Hippocampus-Anterior nucleus of the thalamus-Posterior cingulate, HAP-wave." This limbic HAP-wave was visually distinct and separately decoded from the CCEP waveform in ACC after amygdala stimulation. Diffusion MRI data show that the measured end points in the PCC overlap with the end points of the parolfactory cingulum bundle rather than the parahippocampal cingulum, suggesting that the limbic HAP-wave may travel through fornix, mammillary bodies, and the anterior nucleus of the thalamus (ANT). This was further confirmed by stimulating the ANT, which evoked the same limbic HAP-wave but with an earlier latency. Limbic subsystems have unique stimulation-evoked signatures that may be used in the future to help network pathology diagnosis.SIGNIFICANCE STATEMENT The limbic system is often compromised in diverse clinical conditions, such as epilepsy or Alzheimer's disease, and characterizing its typical circuit responses may provide diagnostic insight. Stimulation-evoked waveforms have been used in the motor system to diagnose circuit pathology. We translate this framework to limbic subsystems using human intracranial stereo EEG (sEEG) recordings that measure deeper brain areas. Our sEEG recordings describe a stimulation-evoked waveform characteristic to the memory and spatial subsystem of the limbic network that we term the "limbic HAP-wave." The limbic HAP-wave follows anatomic white matter pathways from hippocampus to thalamus to the posterior cingulum and shows promise as a distinct biomarker of signaling in the human brain memory and spatial limbic network.


Asunto(s)
Núcleos Talámicos Anteriores , Epilepsia , Humanos , Masculino , Femenino , Sistema Límbico/fisiología , Electroencefalografía , Potenciales Evocados/fisiología , Estimulación Eléctrica
4.
J Neurosci ; 43(39): 6653-6666, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37620157

RESUMEN

The impedance is a fundamental electrical property of brain tissue, playing a crucial role in shaping the characteristics of local field potentials, the extent of ephaptic coupling, and the volume of tissue activated by externally applied electrical brain stimulation. We tracked brain impedance, sleep-wake behavioral state, and epileptiform activity in five people with epilepsy living in their natural environment using an investigational device. The study identified impedance oscillations that span hours to weeks in the amygdala, hippocampus, and anterior nucleus thalamus. The impedance in these limbic brain regions exhibit multiscale cycles with ultradian (∼1.5-1.7 h), circadian (∼21.6-26.4 h), and infradian (∼20-33 d) periods. The ultradian and circadian period cycles are driven by sleep-wake state transitions between wakefulness, nonrapid eye movement (NREM) sleep, and rapid eye movement (REM) sleep. Limbic brain tissue impedance reaches a minimum value in NREM sleep, intermediate values in REM sleep, and rises through the day during wakefulness, reaching a maximum in the early evening before sleep onset. Infradian (∼20-33 d) impedance cycles were not associated with a distinct behavioral correlate. Brain tissue impedance is known to strongly depend on the extracellular space (ECS) volume, and the findings reported here are consistent with sleep-wake-dependent ECS volume changes recently observed in the rodent cortex related to the brain glymphatic system. We hypothesize that human limbic brain ECS changes during sleep-wake state transitions underlie the observed multiscale impedance cycles. Impedance is a simple electrophysiological biomarker that could prove useful for tracking ECS dynamics in human health, disease, and therapy.SIGNIFICANCE STATEMENT The electrical impedance in limbic brain structures (amygdala, hippocampus, anterior nucleus thalamus) is shown to exhibit oscillations over multiple timescales. We observe that impedance oscillations with ultradian and circadian periodicities are associated with transitions between wakefulness, NREM, and REM sleep states. There are also impedance oscillations spanning multiple weeks that do not have a clear behavioral correlate and whose origin remains unclear. These multiscale impedance oscillations will have an impact on extracellular ionic currents that give rise to local field potentials, ephaptic coupling, and the tissue activated by electrical brain stimulation. The approach for measuring tissue impedance using perturbational electrical currents is an established engineering technique that may be useful for tracking ECS volume.


Asunto(s)
Sueño REM , Sueño , Humanos , Impedancia Eléctrica , Sueño/fisiología , Sueño REM/fisiología , Encéfalo/fisiología , Vigilia/fisiología , Hipocampo
5.
Epilepsia ; 65(7): e104-e112, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38776216

RESUMEN

Studies suggest that self-reported seizure diaries suffer from 50% under-reporting on average. It is unknown to what extent this impacts medication management. This study used simulation to predict the seizure outcomes of a large heterogeneous clinic population treated with a standardized algorithm based on self-reported seizures. Using CHOCOLATES, a state-of-the-art realistic seizure diary simulator, 100 000 patients were simulated over 10 years. A standard algorithm for medication management was employed at 3 month intervals for all patients. The impact on true seizure rates, expected seizure rates, and time-to-steady-dose were computed for self-reporting sensitivities 0%-100%. Time-to-steady-dose and medication use mostly did not depend on sensitivity. True seizure rate decreased minimally with increasing self-reporting in a non-linear fashion, with the largest decreases at low sensitivity rates (0%-10%). This study suggests that an extremely wide range of sensitivity will have similar seizure outcomes when patients are clinically treated using an algorithm similar to the one presented. Conversely, patients with sensitivity ≤10% would be expected to benefit (via lower seizure rates) from objective devices that provide even small improvements in seizure sensitivity.


Asunto(s)
Algoritmos , Anticonvulsivantes , Epilepsia , Convulsiones , Autoinforme , Humanos , Anticonvulsivantes/uso terapéutico , Epilepsia/tratamiento farmacológico , Convulsiones/tratamiento farmacológico , Convulsiones/diagnóstico , Masculino , Femenino , Resultado del Tratamiento , Simulación por Computador , Adulto
6.
Epilepsia ; 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39373185

RESUMEN

OBJECTIVE: Wearable nonelectroencephalographic biosignal recordings captured from the wrist offer enormous potential for seizure monitoring. However, signal quality remains a challenging factor affecting data reliability. Models trained for seizure detection depend on the quality of recordings in peri-ictal periods in performing a feature-based separation of ictal periods from interictal periods. Thus, this study aims to investigate the effect of epileptic seizures on signal quality, ensuring accurate and reliable monitoring. METHODS: This study assesses the signal quality of wearable data during peri-ictal phases of generalized tonic-clonic and focal to bilateral tonic-clonic seizures (TCS), focal motor seizures (FMS), and focal nonmotor seizures (FNMS). We evaluated accelerometer (ACC) activity and the signal quality of electrodermal activity (EDA) and blood volume pulse (BVP) data. Additionally, we analyzed the influence of peri-ictal movements as assessed by ACC (ACC activity) on signal quality and examined intraictal subphases of focal to bilateral TCS. RESULTS: We analyzed 386 seizures from 111 individuals in three international epilepsy monitoring units. BVP signal quality and ACC activity levels differed between all seizure types. We found the largest decrease in BVP signal quality and increase in ACC activity when comparing the ictal phase to the pre- and postictal phases for TCS. Additionally, ACC activity was strongly negatively correlated with BVP signal quality for TCS and FMS, and weakly for FNMS. Intraictal analysis revealed that tonic and clonic subphases have the lowest BVP signal quality and the highest ACC activity. SIGNIFICANCE: Motor elements of seizures significantly impair BVP signal quality, but do not have significant effect on EDA signal quality, as assessed by wrist-worn wearables. The results underscore the importance of signal quality assessment methods and careful selection of robust modalities to ensure reliable seizure detection. Future research is needed to explain whether seizure detection models' decisions are based on signal responses induced by physiological processes as opposed to artifacts.

7.
Epilepsia ; 65(4): 1017-1028, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38366862

RESUMEN

OBJECTIVE: Epilepsy management employs self-reported seizure diaries, despite evidence of seizure underreporting. Wearable and implantable seizure detection devices are now becoming more widely available. There are no clear guidelines about what levels of accuracy are sufficient. This study aimed to simulate clinical use cases and identify the necessary level of accuracy for each. METHODS: Using a realistic seizure simulator (CHOCOLATES), a ground truth was produced, which was then sampled to generate signals from simulated seizure detectors of various capabilities. Five use cases were evaluated: (1) randomized clinical trials (RCTs), (2) medication adjustment in clinic, (3) injury prevention, (4) sudden unexpected death in epilepsy (SUDEP) prevention, and (5) treatment of seizure clusters. We considered sensitivity (0%-100%), false alarm rate (FAR; 0-2/day), and device type (external wearable vs. implant) in each scenario. RESULTS: The RCT case was efficient for a wide range of wearable parameters, though implantable devices were preferred. Lower accuracy wearables resulted in subtle changes in the distribution of patients enrolled in RCTs, and therefore higher sensitivity and lower FAR values were preferred. In the clinic case, a wide range of sensitivity, FAR, and device type yielded similar results. For injury prevention, SUDEP prevention, and seizure cluster treatment, each scenario required high sensitivity and yet was minimally influenced by FAR. SIGNIFICANCE: The choice of use case is paramount in determining acceptable accuracy levels for a wearable seizure detection device. We offer simulation results for determining and verifying utility for specific use case and specific wearable parameters.


Asunto(s)
Epilepsia Generalizada , Epilepsia , Muerte Súbita e Inesperada en la Epilepsia , Dispositivos Electrónicos Vestibles , Humanos , Muerte Súbita e Inesperada en la Epilepsia/prevención & control , Convulsiones/diagnóstico , Convulsiones/terapia , Epilepsia/diagnóstico , Electroencefalografía/métodos
8.
Epilepsy Behav ; 157: 109820, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38823076

RESUMEN

BACKGROUND: Efficient, non-invasive monitoring may provide a more accurate and comprehensive understanding of seizure frequency and the development of some comorbidities in people with epilepsy. Novel keyboard technology measuring digital keypress statistics has demonstrated its practical value for neurodegenerative diseases including Parkinson's Disease and Dementia. Smartphones integrated into daily life may serve as a low-burden longitudinal monitoring system for patients with epilepsy. OBJECTIVE: This study aimed to assess the feasibility of keyboard statistics as an objective measure of seizure frequency for patients with epilepsy, in addition to tracking differences between cognitively normal and cognitively impaired patients. METHODS: Six adult patients admitted to the Epilepsy Monitoring Unit (EMU) at Mayo Clinic in Rochester, Minnesota were studied. The keyboard was installed on the patient's smartphone. In the EMU, typing statistics were correlated to electroencephalogram (EEG) confirmed seizures. After discharge, participants continued using their keyboards and kept a seizure log. We also analyzed the key press/release times and usage of participants' keyboards for adherence. RESULTS: Keyboard sessions during and after seizures assessed for key press/release differences versus baseline showed no statistically significant difference (p = 0.44). Using one-way ANOVA, cognitive impairment's potential impact on keyboard statistics was explored in patients who had neuropsychological testing (N = 3). Significant differences were found between patients with and without cognitive impairment (p < 0.001). No significant difference was noted between patients with mild intellectual disability and normal cognitive function (p = 0.55).


Asunto(s)
Disfunción Cognitiva , Electroencefalografía , Epilepsia , Estudios de Factibilidad , Convulsiones , Humanos , Masculino , Proyectos Piloto , Femenino , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/etiología , Disfunción Cognitiva/epidemiología , Epilepsia/complicaciones , Epilepsia/psicología , Epilepsia/diagnóstico , Epilepsia/epidemiología , Persona de Mediana Edad , Adulto , Electroencefalografía/métodos , Convulsiones/diagnóstico , Convulsiones/psicología , Convulsiones/complicaciones , Anciano , Teléfono Inteligente , Pruebas Neuropsicológicas
9.
Epilepsy Behav ; 157: 109876, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38851123

RESUMEN

OBJECTIVE: Over recent years, there has been a growing interest in exploring the utility of seizure risk forecasting, particularly how it could improve quality of life for people living with epilepsy. This study reports on user experiences and perspectives of a seizure risk forecaster app, as well as the potential impact on mood and adjustment to epilepsy. METHODS: Active app users were asked to complete a survey (baseline and 3-month follow-up) to assess perspectives on the forecast feature as well as mood and adjustment. Post-hoc, nine neutral forecast users (neither agreed nor disagreed it was useful) completed semi-structured interviews, to gain further insight into their perspectives of epilepsy management and seizure forecasting. Non-parametric statistical tests and inductive thematic analyses were used to analyse the quantitative and qualitative data, respectively. RESULTS: Surveys were completed by 111 users. Responders consisted of "app users" (n = 58), and "app and forecast users" (n = 53). Of the "app and forecast users", 40 % believed the forecast was accurate enough to be useful in monitoring for seizure risk, and 60 % adopted it for purposes like scheduling activities and helping mental state. Feeling more in control was the most common response to both high and low risk forecasted states. In-depth interviews revealed five broad themes, of which 'frustrations with lack of direction' (regarding their current epilepsy management approach), 'benefits of increased self-knowledge' and 'current and anticipated usefulness of forecasting' were the most common. SIGNIFICANCE: Preliminary results suggest that seizure risk forecasting can be a useful tool for people with epilepsy to make lifestyle changes, such as scheduling daily events, and experience greater feelings of control. These improvements may be attributed, at least partly, to the improvements in self-knowledge experienced through forecast use.


Asunto(s)
Convulsiones , Humanos , Femenino , Masculino , Adulto , Convulsiones/psicología , Convulsiones/diagnóstico , Persona de Mediana Edad , Adulto Joven , Aplicaciones Móviles , Predicción , Epilepsia/psicología , Encuestas y Cuestionarios , Adolescente , Calidad de Vida , Anciano , Riesgo , Estudios de Seguimiento
10.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33875582

RESUMEN

High-frequency oscillations (HFOs) are a promising biomarker for localizing epileptogenic brain and guiding successful neurosurgery. However, the utility and translation of noninvasive HFOs, although highly desirable, is impeded by the difficulty in differentiating pathological HFOs from nonepileptiform high-frequency activities and localizing the epileptic tissue using noninvasive scalp recordings, which are typically contaminated with high noise levels. Here, we show that the consistent concurrence of HFOs with epileptiform spikes (pHFOs) provides a tractable means to identify pathological HFOs automatically, and this in turn demarks an epileptiform spike subgroup with higher epileptic relevance than the other spikes in a cohort of 25 temporal epilepsy patients (including a total of 2,967 interictal spikes and 1,477 HFO events). We found significant morphological distinctions of HFOs and spikes in the presence/absence of this concurrent status. We also demonstrated that the proposed pHFO source imaging enhanced localization of epileptogenic tissue by 162% (∼5.36 mm) for concordance with surgical resection and by 186% (∼12.48 mm) with seizure-onset zone determined by invasive studies, compared to conventional spike imaging, and demonstrated superior congruence with the surgical outcomes. Strikingly, the performance of spike imaging was selectively boosted by the presence of spikes with pHFOs, especially in patients with multitype spikes. Our findings suggest that concurrent HFOs and spikes reciprocally discriminate pathological activities, providing a translational tool for noninvasive presurgical diagnosis and postsurgical evaluation in vulnerable patients.


Asunto(s)
Mapeo Encefálico/métodos , Epilepsia/fisiopatología , Adulto , Biomarcadores , Encéfalo/cirugía , Estudios de Cohortes , Electroencefalografía/métodos , Epilepsia/cirugía , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Magnetoencefalografía/métodos , Masculino , Persona de Mediana Edad
11.
Epilepsia ; 64(9): 2421-2433, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37303239

RESUMEN

OBJECTIVE: Previous studies suggested that patients with epilepsy might be able to forecast their own seizures. This study aimed to assess the relationships between premonitory symptoms, perceived seizure risk, and future and recent self-reported and electroencephalographically (EEG)-confirmed seizures in ambulatory patients with epilepsy in their natural home environments. METHODS: Long-term e-surveys were collected from patients with and without concurrent EEG recordings. Information obtained from the e-surveys included medication adherence, sleep quality, mood, stress, perceived seizure risk, and seizure occurrences preceding the survey. EEG seizures were identified. Univariate and multivariate generalized linear mixed-effect regression models were used to estimate odds ratios (ORs) for the assessment of the relationships. Results were compared with the seizure forecasting classifiers and device forecasting literature using a mathematical formula converting OR to equivalent area under the curve (AUC). RESULTS: Fifty-four subjects returned 10 269 e-survey entries, with four subjects acquiring concurrent EEG recordings. Univariate analysis revealed that increased stress (OR = 2.01, 95% confidence interval [CI] = 1.12-3.61, AUC = .61, p = .02) was associated with increased relative odds of future self-reported seizures. Multivariate analysis showed that previous self-reported seizures (OR = 5.37, 95% CI = 3.53-8.16, AUC = .76, p < .001) were most strongly associated with future self-reported seizures, and high perceived seizure risk (OR = 3.34, 95% CI = 1.87-5.95, AUC = .69, p < .001) remained significant when prior self-reported seizures were added to the model. No correlation with medication adherence was found. No significant association was found between e-survey responses and subsequent EEG seizures. SIGNIFICANCE: Our results suggest that patients may tend to self-forecast seizures that occur in sequential groupings and that low mood and increased stress may be the result of previous seizures rather than independent premonitory symptoms. Patients in the small cohort with concurrent EEG showed no ability to self-predict EEG seizures. The conversion from OR to AUC values facilitates direct comparison of performance between survey and device studies involving survey premonition and forecasting.


Asunto(s)
Epilepsia , Convulsiones , Humanos , Convulsiones/diagnóstico , Convulsiones/epidemiología , Epilepsia/complicaciones , Epilepsia/diagnóstico , Epilepsia/epidemiología , Electroencefalografía/métodos , Análisis Multivariante , Encuestas y Cuestionarios
12.
Epilepsia ; 64(6): 1627-1639, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37060170

RESUMEN

OBJECTIVE: The factors that influence seizure timing are poorly understood, and seizure unpredictability remains a major cause of disability. Work in chronobiology has shown that cyclical physiological phenomena are ubiquitous, with daily and multiday cycles evident in immune, endocrine, metabolic, neurological, and cardiovascular function. Additionally, work with chronic brain recordings has identified that seizure risk is linked to daily and multiday cycles in brain activity. Here, we provide the first characterization of the relationships between the cyclical modulation of a diverse set of physiological signals, brain activity, and seizure timing. METHODS: In this cohort study, 14 subjects underwent chronic ambulatory monitoring with a multimodal wrist-worn sensor (recording heart rate, accelerometry, electrodermal activity, and temperature) and an implanted responsive neurostimulation system (recording interictal epileptiform abnormalities and electrographic seizures). Wavelet and filter-Hilbert spectral analyses characterized circadian and multiday cycles in brain and wearable recordings. Circular statistics assessed electrographic seizure timing and cycles in physiology. RESULTS: Ten subjects met inclusion criteria. The mean recording duration was 232 days. Seven subjects had reliable electroencephalographic seizure detections (mean = 76 seizures). Multiday cycles were present in all wearable device signals across all subjects. Seizure timing was phase locked to multiday cycles in five (temperature), four (heart rate, phasic electrodermal activity), and three (accelerometry, heart rate variability, tonic electrodermal activity) subjects. Notably, after regression of behavioral covariates from heart rate, six of seven subjects had seizure phase locking to the residual heart rate signal. SIGNIFICANCE: Seizure timing is associated with daily and multiday cycles in multiple physiological processes. Chronic multimodal wearable device recordings can situate rare paroxysmal events, like seizures, within a broader chronobiology context of the individual. Wearable devices may advance the understanding of factors that influence seizure risk and enable personalized time-varying approaches to epilepsy care.


Asunto(s)
Epilepsia , Convulsiones , Humanos , Estudios de Cohortes , Convulsiones/diagnóstico , Electroencefalografía , Monitoreo Ambulatorio
13.
Epilepsia ; 63(10): 2476-2490, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35811476

RESUMEN

With continued advancement in computational technologies, the analysis of electroencephalography (EEG) has shifted from pure visual analysis to a noninvasive computational technique called EEG source imaging (ESI), which involves mathematical modeling of dipolar and distributed sources of a given scalp EEG pattern. ESI is a noninvasive phase I test for presurgical localization of the seizure onset zone in focal epilepsy. It is a relatively inexpensive modality, as it leverages scalp EEG and magnetic resonance imaging (MRI) data already collected typically during presurgical evaluation. With an adequate number of electrodes and combined with patient-specific MRI-based head models, ESI has proven to be a valuable and accurate clinical diagnostic tool for localizing the epileptogenic zone. Despite its advantages, however, ESI is routinely used at only a minority of epilepsy centers. This paper reviews the current evidence and practical fundamentals for using ESI of interictal and ictal epileptic activity during the presurgical evaluation of drug-resistant patients. We identify common errors in processing and interpreting ESI studies, describe the differences in approach needed for localizing interictal and ictal EEG discharges through practical examples, and describe best practices for optimizing the diagnostic information available from these studies.


Asunto(s)
Epilepsias Parciales , Epilepsia , Electroencefalografía/métodos , Epilepsias Parciales/diagnóstico por imagen , Epilepsia/diagnóstico por imagen , Epilepsia/cirugía , Humanos , Imagen por Resonancia Magnética , Convulsiones/diagnóstico
14.
Epilepsia ; 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35604546

RESUMEN

To date, the unpredictability of seizures remains a source of suffering for people with epilepsy, motivating decades of research into methods to forecast seizures. Originally, only few scientists and neurologists ventured into this niche endeavor, which, given the difficulty of the task, soon turned into a long and winding road. Over the past decade, however, our narrow field has seen a major acceleration, with trials of chronic electroencephalographic devices and the subsequent discovery of cyclical patterns in the occurrence of seizures. Now, a burgeoning science of seizure timing is emerging, which in turn informs best forecasting strategies for upcoming clinical trials. Although the finish line might be in view, many challenges remain to make seizure forecasting a reality. This review covers the most recent scientific, technical, and medical developments, discusses methodology in detail, and sets a number of goals for future studies.

15.
Epilepsia ; 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35441703

RESUMEN

This study describes a generalized cross-patient seizure-forecasting approach using recurrent neural networks with ultra-long-term subcutaneous EEG (sqEEG) recordings. Data from six patients diagnosed with refractory epilepsy and monitored with an sqEEG device were used to develop a generalized algorithm for seizure forecasting using long short-term memory (LSTM) deep-learning classifiers. Electrographic seizures were identified by a board-certified epileptologist. One-minute data segments were labeled as preictal or interictal based on their relationship to confirmed seizures. Data were separated into training and testing data sets, and to compensate for the unbalanced data ratio in training, noise-added copies of preictal data segments were generated to expand the training data set. The mean and standard deviation (SD) of the training data were used to normalize all data, preserving the pseudo-prospective nature of the analysis. Different architecture classifiers were trained and tested using a leave-one-patient-out cross-validation method, and the area under the receiver-operating characteristic (ROC) curve (AUC) was used to evaluate the performance classifiers. The importance of each input signal was evaluated using a leave-one-signal-out method with repeated training and testing for each classifier. Cross-patient classifiers achieved performance significantly better than chance in four of the six patients and an overall mean AUC of 0.602 ± 0.126 (mean ± SD). A time in warning of 37.386% ± 5.006% (mean ± std) and sensitivity of 0.691 ± 0.068 (mean ± std) were observed for patients with better than chance results. Analysis of input channels showed a significant contribution (p < .05) by the Fourier transform of signals channels to overall classifier performance. The relative contribution of input signals varied among patients and architectures, suggesting that the inclusion of all signals contributes to robustness in a cross-patient classifier. These early results show that it is possible to forecast seizures training with data from different patients using two-channel ultra-long-term sqEEG.

16.
Epilepsia ; 2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35395101

RESUMEN

OBJECTIVE: One of the most disabling aspects of living with chronic epilepsy is the unpredictability of seizures. Cumulative research in the past decades has advanced our understanding of the dynamics of seizure risk. Technological advances have recently made it possible to record pertinent biological signals, including electroencephalogram (EEG), continuously. We aimed to assess whether patient-specific seizure forecasting is possible using remote, minimally invasive ultra-long-term subcutaneous EEG. METHODS: We analyzed a two-center cohort of ultra-long-term subcutaneous EEG recordings, including six patients with drug-resistant focal epilepsy monitored for 46-230 days with median 18 h/day of recorded data, totaling >11 000 h of EEG. Total electrographic seizures identified by visual review ranged from 12 to 36 per patient. Three candidate subject-specific long short-term memory network deep learning classifiers were trained offline and pseudoprospectively on preictal (1 h before) and interictal (>1 day from seizures) EEG segments. Performance was assessed relative to a random predictor. Periodicity of the final forecasts was also investigated with autocorrelation. RESULTS: Depending on each architecture, significant forecasting performance was achieved in three to five of six patients, with overall mean area under the receiver operating characteristic curve of .65-.74. Significant forecasts showed sensitivity ranging from 64% to 80% and time in warning from 10.9% to 44.4%. Overall, the output of the forecasts closely followed patient-specific circadian patterns of seizure occurrence. SIGNIFICANCE: This study demonstrates proof-of-principle for the possibility of subject-specific seizure forecasting using a minimally invasive subcutaneous EEG device capable of ultra-long-term at-home recordings. These results are encouraging for the development of a prospective seizure forecasting trial with minimally invasive EEG.

17.
Epilepsia ; 62(10): e158-e164, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34418083

RESUMEN

There is a paucity of data to guide anterior nucleus of the thalamus (ANT) deep brain stimulation (DBS) with brain sensing. The clinical Medtronic Percept DBS device provides constrained brain sensing power within a frequency band (power-in-band [PIB]), recorded in 10-min averaged increments. Here, four patients with temporal lobe epilepsy were implanted with an investigational device providing full bandwidth chronic intracranial electroencephalogram (cEEG) from bilateral ANT and hippocampus (Hc). ANT PIB-based seizure detection was assessed. Detection parameters were cEEG PIB center frequency, bandwidth, and epoch duration. Performance was evaluated against epileptologist-confirmed Hc seizures, and assessed by area under the precision-recall curve (PR-AUC). Data included 99 days of cEEG, and 20, 278, 3, and 18 Hc seizures for Subjects 1-4. The best detector had 7-Hz center frequency, 5-Hz band width, and 10-s epoch duration (group PR-AUC = .90), with 75% sensitivity and .38 false alarms per day for Subject 1, and 100% and .0 for Subjects 3 and 4. Hc seizures in Subject 2 did not propagate to ANT. The relative change of ANT PIB was maximal ipsilateral to seizure onset for all detected seizures. Chronic ANT and Hc recordings provide direct guidance for ANT DBS with brain sensing.


Asunto(s)
Núcleos Talámicos Anteriores , Estimulación Encefálica Profunda , Epilepsia , Núcleos Talámicos Anteriores/fisiología , Epilepsia/terapia , Hipocampo/diagnóstico por imagen , Humanos , Convulsiones/diagnóstico , Tálamo
18.
Epilepsia ; 62(2): 416-425, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33507573

RESUMEN

OBJECTIVE: Video-electroencephalography (vEEG) is an important component of epilepsy diagnosis and management. Nevertheless, inpatient vEEG monitoring fails to capture seizures in up to one third of patients. We hypothesized that personalized seizure forecasts could be used to optimize the timing of vEEG. METHODS: We used a database of ambulatory vEEG studies to select a cohort with linked electronic seizure diaries of more than 20 reported seizures over at least 8 weeks. The total cohort included 48 participants. Diary seizure times were used to detect individuals' multiday seizure cycles and estimate times of high seizure risk. We compared whether estimated seizure risk was significantly different between conclusive and inconclusive vEEGs, and between vEEG with and without recorded epileptic activity. vEEGs were conducted prior to self-reported seizures; hence, the study aimed to provide a retrospective proof of concept that cycles of seizure risk were correlated with vEEG outcomes. RESULTS: Estimated seizure risk was significantly higher for conclusive vEEGs and vEEGs with epileptic activity. Across all cycle strengths, the average time in high risk during vEEG was 29.1% compared with 14% for the conclusive/inconclusive groups and 32% compared to 18% for the epileptic activity/no epileptic activity groups. On average, 62.5% of the cohort showed increased time in high risk during their previous vEEG when epileptic activity was recorded (compared to 28% of the cohort where epileptic activity was not recorded). For conclusive vEEGs, 50% of the cohort had increased time in high risk, compared to 21.5% for inconclusive vEEGs. SIGNIFICANCE: Although retrospective, this study provides a proof of principle that scheduling monitoring times based on personalized seizure risk forecasts can improve the yield of vEEG. Forecasts can be developed at low cost from mobile seizure diaries. A simple scheduling tool to improve diagnostic outcomes may reduce cost and risks associated with delayed or missed diagnosis in epilepsy.


Asunto(s)
Electroencefalografía , Epilepsia/fisiopatología , Convulsiones/fisiopatología , Autoinforme , Adolescente , Adulto , Anciano , Niño , Epilepsia/diagnóstico , Femenino , Predicción , Humanos , Masculino , Persona de Mediana Edad , Prueba de Estudio Conceptual , Estudios Retrospectivos , Convulsiones/diagnóstico , Grabación en Video , Adulto Joven
19.
Epilepsia ; 62(8): 1820-1828, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34250608

RESUMEN

OBJECTIVE: Ultra long-term subcutaneous electroencephalography (sqEEG) monitoring is a new modality with great potential for both health and disease, including epileptic seizure detection and forecasting. However, little is known about the long-term quality and consistency of the sqEEG signal, which is the objective of this study. METHODS: The largest multicenter cohort of sqEEG was analyzed, including 14 patients with epilepsy and 12 healthy subjects, implanted with a sqEEG device (24/7 EEG™ SubQ), and recorded from 23 to 230 days (median 42 days), with a median data capture rate of 75% (17.9 hours/day). Median power spectral density plots of each subject were examined for physiological peaks, including at diurnal and nocturnal periods. Long-term temporal trends in signal impedance and power spectral features were investigated with subject-specific linear regression models and group-level linear mixed-effects models. RESULTS: sqEEG spectrograms showed an approximate 1/f power distribution. Diurnal peaks in the alpha range (8-13Hz) and nocturnal peaks in the sigma range (12-16Hz) were seen in the majority of subjects. Signal impedances remained low, and frequency band powers were highly stable throughout the recording periods. SIGNIFICANCE: The spectral characteristics of minimally invasive, ultra long-term sqEEG are similar to scalp EEG, whereas the signal is highly stationary. Our findings reinforce the suitability of this system for chronic implantation on diverse clinical applications, from seizure detection and forecasting to brain-computer interfaces.


Asunto(s)
Electroencefalografía , Epilepsia , Epilepsia/diagnóstico , Humanos , Convulsiones/diagnóstico , Análisis Espectral , Tejido Subcutáneo
20.
Epilepsia ; 62(10): 2439-2450, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34338324

RESUMEN

OBJECTIVE: This study aims to evaluate the role of scalp electroencephalography (EEG; ictal and interictal patterns) in predicting resective epilepsy surgery outcomes. We use the data to further develop a nomogram to predict seizure freedom. METHODS: We retrospectively reviewed the scalp EEG findings and clinical data of patients who underwent surgical resection at three epilepsy centers. Using both EEG and clinical variables categorized into 13 isolated candidate predictors and 6 interaction terms, we built a multivariable Cox proportional hazards model to predict seizure freedom 2 years after surgery. Harrell's step-down procedure was used to sequentially eliminate the least-informative variables from the model until the change in the concordance index (c-index) with variable removal was less than 0.01. We created a separate model using only clinical variables. Discrimination of the two models was compared to evaluate the role of scalp EEG in seizure-freedom prediction. RESULTS: Four hundred seventy patient records were analyzed. Following internal validation, the full Clinical + EEG model achieved an optimism-corrected c-index of 0.65, whereas the c-index of the model without EEG data was 0.59. The presence of focal to bilateral tonic-clonic seizures (FBTCS), high preoperative seizure frequency, absence of hippocampal sclerosis, and presence of nonlocalizable seizures predicted worse outcome. The presence of FBTCS had the largest impact for predicting outcome. The analysis of the models' interactions showed that in patients with unilateral interictal epileptiform discharges (IEDs), temporal lobe surgery cases had a better outcome. In cases with bilateral IEDs, abnormal magnetic resonance imaging (MRI) predicted worse outcomes, and in cases without IEDs, patients with extratemporal epilepsy and abnormal MRI had better outcomes. SIGNIFICANCE: This study highlights the value of scalp EEG, particularly the significance of IEDs, in predicting surgical outcome. The nomogram delivers an individualized prediction of postoperative outcome, and provides a unique assessment of the relationship between the outcome and preoperative findings.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Electroencefalografía/métodos , Epilepsia/diagnóstico , Epilepsia/cirugía , Epilepsia del Lóbulo Temporal/cirugía , Humanos , Imagen por Resonancia Magnética/métodos , Estudios Retrospectivos , Cuero Cabelludo/cirugía , Convulsiones , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda