Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nature ; 563(7732): 501-507, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30429615

RESUMEN

Female Aedes aegypti mosquitoes infect more than 400 million people each year with dangerous viral pathogens including dengue, yellow fever, Zika and chikungunya. Progress in understanding the biology of mosquitoes and developing the tools to fight them has been slowed by the lack of a high-quality genome assembly. Here we combine diverse technologies to produce the markedly improved, fully re-annotated AaegL5 genome assembly, and demonstrate how it accelerates mosquito science. We anchored physical and cytogenetic maps, doubled the number of known chemosensory ionotropic receptors that guide mosquitoes to human hosts and egg-laying sites, provided further insight into the size and composition of the sex-determining M locus, and revealed copy-number variation among glutathione S-transferase genes that are important for insecticide resistance. Using high-resolution quantitative trait locus and population genomic analyses, we mapped new candidates for dengue vector competence and insecticide resistance. AaegL5 will catalyse new biological insights and intervention strategies to fight this deadly disease vector.


Asunto(s)
Aedes/genética , Infecciones por Arbovirus/virología , Arbovirus , Genoma de los Insectos/genética , Genómica/normas , Control de Insectos , Mosquitos Vectores/genética , Mosquitos Vectores/virología , Aedes/virología , Animales , Infecciones por Arbovirus/transmisión , Arbovirus/aislamiento & purificación , Variaciones en el Número de Copia de ADN/genética , Virus del Dengue/aislamiento & purificación , Femenino , Variación Genética/genética , Genética de Población , Glutatión Transferasa/genética , Resistencia a los Insecticidas/efectos de los fármacos , Masculino , Anotación de Secuencia Molecular , Familia de Multigenes/genética , Piretrinas/farmacología , Estándares de Referencia , Procesos de Determinación del Sexo/genética
2.
Molecules ; 26(19)2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34641337

RESUMEN

We report the design and synthesis of a series of new 5-chloropyridinyl esters of salicylic acid, ibuprofen, indomethacin, and related aromatic carboxylic acids for evaluation against SARS-CoV-2 3CL protease enzyme. These ester derivatives were synthesized using EDC in the presence of DMAP to provide various esters in good to excellent yields. Compounds are stable and purified by silica gel chromatography and characterized using 1H-NMR, 13C-NMR, and mass spectral analysis. These synthetic derivatives were evaluated in our in vitro SARS-CoV-2 3CLpro inhibition assay using authentic SARS-CoV-2 3CLpro enzyme. Compounds were also evaluated in our in vitro antiviral assay using quantitative VeroE6 cell-based assay with RNAqPCR. A number of compounds exhibited potent SARS-CoV-2 3CLpro inhibitory activity and antiviral activity. Compound 9a was the most potent inhibitor, with an enzyme IC50 value of 160 nM. Compound 13b exhibited an enzyme IC50 value of 4.9 µM. However, it exhibited a potent antiviral EC50 value of 24 µM in VeroE6 cells. Remdesivir, an RdRp inhibitor, exhibited an antiviral EC50 value of 2.4 µM in the same assay. We assessed the mode of inhibition using mass spectral analysis which suggested the formation of a covalent bond with the enzyme. To obtain molecular insight, we have created a model of compound 9a bound to SARS-CoV-2 3CLpro in the active site.


Asunto(s)
Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacología , Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , SARS-CoV-2/efectos de los fármacos , Animales , Antivirales/química , Antivirales/farmacología , Chlorocebus aethiops , Proteasas 3C de Coronavirus/metabolismo , Ésteres/química , Ésteres/farmacología , Halogenación , Humanos , Ibuprofeno/análogos & derivados , Ibuprofeno/farmacología , Indometacina/análogos & derivados , Indometacina/farmacología , Simulación del Acoplamiento Molecular , Piridinas/química , Piridinas/farmacología , SARS-CoV-2/metabolismo , Ácido Salicílico/química , Ácido Salicílico/farmacología , Células Vero
3.
Front Immunol ; 14: 1212136, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37662941

RESUMEN

Introduction: Cellular immune responses against AAV vector capsid represent an obstacle for successful gene therapy. Previous studies have used overlapping peptides spanning the entire capsid sequence to identify T cell epitopes recognized by AAV-specific CD8+ T cells. However, the repertoire of peptides naturally displayed by HLA class I molecules for CD8 T cell recognition is unknown. Methods: Using mRNA transfected monocyte-derived dendritic cells (MDDCs) and MHC-associated peptide proteomics (MAPPs), we identified the HLA class I immunopeptidomes of AAV2, AAV6 and AAV9 capsids. MDDCs were isolated from a panel of healthy donors that have diverse alleles across the US population. mRNA-transfected MDDCs were lysed, the peptide:HLA complexes immunoprecipitated, and peptides eluted and analyzed by mass spectrometry. Results: We identified 65 AAV capsid-derived peptides loaded on HLA class I molecules of mRNA transfected monocyte derived dendritic cells. The HLA class I peptides are distributed along the entire capsid and more than 60% are contained within HLA class II clusters. Most of the peptides are organized as single species, however we identified twelve clusters containing at least 2 peptides of different lengths. Only 9% of the identified peptides have been previously identified as T cell epitopes, demonstrating that the immunogenicity potential for the vast majority of the AAV HLA class I immunopeptidome remains uncharacterized. In contrast, 12 immunogenic epitopes identified before were not found to be naturally processed in our study. Remarkably, 11 naturally presented AAV peptides were highly conserved among the three serotypes analyzed suggesting the possibility of cross-reactive AAV-specific CD8 T cells. Discussion: This work is the first comprehensive study identifying the naturally displayed HLA class I peptides derived from the capsid of AAVs. The results from this study can be used to generate strategies to assess immunogenicity risk and cross-reactivity among serotypes during gene therapies.


Asunto(s)
Proteínas de la Cápside , Epítopos de Linfocito T , Cápside , Alelos , ARN Mensajero
4.
Front Immunol ; 13: 1067399, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36605211

RESUMEN

Introduction: Gene therapies are using Adeno-associated viruses (AAVs) as vectors, but immune responses against the capsids pose challenges to their efficiency and safety. Helper T cell recognition of capsid-derived peptides bound to human leukocyte antigen (HLA) class II molecules is an essential step in the AAV-specific adaptive immunity. Methods: Using MHC-associated peptide proteomics, we identified the HLA-DR and HLA-DQ immunopeptidomes of the capsid proteins of three different AAV serotypes (AAV2, AAV6, and AAV9) from a panel of healthy donors selected to represent a majority of allele usage. Results: The identified sequences span the capsids of all serotypes, with AAV2 having the highest peptide count. For all the serotypes, multiple promiscuous peptides were identified and displayed by both HLA-DR and -DQ. However, despite high sequence homology, there were few identical peptides among AAV2, AAV6, and AAV9 immunopeptidomes, and none were promiscuous. Discussion: Results from this work represent a comprehensive immunopeptidomics research of potential CD4+ T cell epitopes and provide the basis for immunosurveillance efforts for safer and more efficient AAV-based gene therapies.


Asunto(s)
Proteínas de la Cápside , Cápside , Humanos , Proteínas de la Cápside/genética , Dependovirus , Péptidos/metabolismo , Antígenos HLA/metabolismo
5.
Parasit Vectors ; 15(1): 233, 2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35761349

RESUMEN

BACKGROUND: Fatty acids are the building blocks of complex lipids essential for living organisms. In mosquitoes, fatty acids are involved in cell membrane production, energy conservation and expenditure, innate immunity, development and reproduction. Fatty acids are synthesized by a multifunctional enzyme complex called fatty acid synthase (FAS). Several paralogues of FAS were found in the Aedes aegypti mosquito. However, the molecular characteristics and expression of some of these paralogues have not been investigated. METHODS: Genome assemblies of Ae. aegypti were analyzed, and orthologues of human FAS was identified. Phylogenetic analysis and in silico molecular characterization were performed to identify the functional domains of the Ae. aegypti FAS (AaFAS). Quantitative analysis and loss-of-function experiments were performed to determine the significance of different AaFAS transcripts in various stages of development, expression following different diets and the impact of AaFAS on dengue virus, serotype 2 (DENV2) infection and transmission. RESULTS: We identified seven putative FAS genes in the Ae. aegypti genome assembly, based on nucleotide similarity to the FAS proteins (tBLASTn) of humans, other mosquitoes and invertebrates. Bioinformatics and molecular analyses suggested that only five of the AaFAS genes produce mRNA and therefore represent complete gene models. Expression levels of AaFAS varied among developmental stages and between male and female Ae. aegypti. Quantitative analyses revealed that expression of AaFAS1, the putative orthologue of the human FAS, was highest in adult females. Transient knockdown (KD) of AaFAS1 did not induce a complete compensation by other AaFAS genes but limited DENV2 infection of Aag2 cells in culture and the midgut of the mosquito. CONCLUSION: AaFAS1 is the predominant AaFAS in adult mosquitoes. It has the highest amino acid similarity to human FAS and contains all enzymatic domains typical of human FAS. AaFAS1 also facilitated DENV2 replication in both cell culture and in mosquito midguts. Our data suggest that AaFAS1 may play a role in transmission of dengue viruses and could represent a target for intervention strategies.


Asunto(s)
Aedes , Infecciones por Arbovirus , Dengue , Ácido Graso Sintasas , Aedes/genética , Aedes/virología , Animales , Virus del Dengue , Ácido Graso Sintasas/genética , Ácidos Grasos , Femenino , Humanos , Proteínas de Insectos/genética , Masculino , Mosquitos Vectores/virología , Filogenia , Replicación Viral
6.
J Vis Exp ; (144)2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30829331

RESUMEN

New classes of insecticides with novel modes of action are needed to control insecticide resistant populations of mosquitoes that transmit diseases such as Zika, dengue and malaria. Assays for rapid, high-throughput analyses of unformulated novel chemistries against mosquito larvae and adults are presented. We describe protocols for single point-dose and dose response assays to evaluate the toxicity of small molecule chemistries to the Aedes aegypti vector of Zika, dengue and yellow fever, the malaria vector, Anopheles gambiae and the northern house mosquito, Culex quinquefasciatus, on contact and via ingestion. As an example, we evaluated the toxicity of amitriptyline, a small molecule antagonist of G protein-coupled receptors, via larval, adult topical and adult blood-feeding assay. The protocols provide a starting point to investigate insecticide potential. Results are discussed in the context of additional experiments to explore product applications and mechanisms for delivery.


Asunto(s)
Insecticidas/química , Control de Mosquitos/métodos , Mosquitos Vectores/química , Animales
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda