Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Anal Chem ; 88(6): 3264-71, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26836506

RESUMEN

A paradigm shift is underway in the field of quantitative liquid chromatography-mass spectrometry (LC-MS) analysis thanks to the arrival of recent high-resolution mass spectrometers (HRMS). The capability of HRMS to perform sensitive and reliable quantifications of a large variety of analytes in HR-full scan mode is showing that it is now realistic to perform quantitative and qualitative analysis with the same instrument. Moreover, HR-full scan acquisition offers a global view of sample extracts and allows retrospective investigations as virtually all ionized compounds are detected with a high sensitivity. In time, the versatility of HRMS together with the increasing need for relative quantification of hundreds of endogenous metabolites should promote a shift from triple-quadrupole MS to HRMS. However, a current "pitfall" in quantitative LC-HRMS analysis is the lack of HRMS-specific guidance for validated quantitative analyses. Indeed, false positive and false negative HRMS detections are rare, albeit possible, if inadequate parameters are used. Here, we investigated two key parameters for the validation of LC-HRMS quantitative analyses: the mass accuracy (MA) and the mass-extraction-window (MEW) that is used to construct the extracted-ion-chromatograms. We propose MA-parameters, graphs, and equations to calculate rational MEW width for the validation of quantitative LC-HRMS methods. MA measurements were performed on four different LC-HRMS platforms. Experimentally determined MEW values ranged between 5.6 and 16.5 ppm and depended on the HRMS platform, its working environment, the calibration procedure, and the analyte considered. The proposed procedure provides a fit-for-purpose MEW determination and prevents false detections.

2.
Anal Bioanal Chem ; 407(7): 1871-83, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25600687

RESUMEN

The high resolution, accurate mass, and fast scanning features of the Orbitrap(TM) mass spectrometer, combined with the separation power of ultrahigh-performance liquid chromatography were applied for the first time to study the metabolic profiles of several organic flame retardants (FRs) present in indoor dust. To mimic real-life exposure, in vitro cultured HepG2 human hepatocyte cell lines were exposed simultaneously to various FRs in an indoor dust extract for 24 h. Target parent FRs, hexabromocyclododecanes (α-, ß-, and γ-HBCDs), tris-2-chloroethyl phosphate (TCEP), tris(1-chloro-2-propyl) phosphate (TCIPP), and tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), were separated in a single run for the first time using alternating positive and negative heated ESI source. Further metabolite separation and identification was achieved using full scan (70,000 full width at half maximum (FWHM)), accurate mass (up to 1 ppm) spectrometry. Structural confirmation was performed via all ion fragmentation (AIF) spectra using the optional higher collisional dissociation (HCD) cell and MS/MS analysis. First insights into human metabolism of HBCDs revealed several hydroxylated and debrominated phase I metabolites, in addition to conjugated phase II glucuronides. Furthermore, various hydroxylated, oxidized, and conjugated metabolites of chlorinated phosphorous FRs were identified, leading to the suggestion of α-oxidation as a significant metabolic pathway for these compounds.


Asunto(s)
Bromo/metabolismo , Retardadores de Llama/metabolismo , Espectrometría de Masas/métodos , Compuestos Organofosforados/metabolismo , Animales , Células Hep G2 , Humanos , Ratas
3.
Rapid Commun Mass Spectrom ; 28(13): 1561-8, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24861608

RESUMEN

RATIONALE: Non-covalent mass spectrometry (MS) offers considerable potential for protein-ligand screening in drug discovery programmes. However, there are some limitations with the time-of-flight (TOF) instrumentation typically employed that restrict the application of non-covalent MS in industrial laboratories. METHODS: An Exactive Plus EMR mass spectrometer was investigated for its ability to characterise non-covalent protein-small molecule interactions. Nano-electrospray ionisation (nanoESI) infusion was achieved with a TriVersa NanoMate. The transport multipole and ion lens voltages, dissociation energies and pressure in the Orbitrap™ were optimised. Native MS was performed, with ligand titrations to judge retention of protein-ligand interactions, serial dilutions of native proteins as an indication of sensitivity, and a heterogeneous protein analysed for spectral resolution. RESULTS: Interactions between native proteins and ligands are preserved during analysis on the Exactive Plus EMR, with the binding affinities determined in good agreement with expected values. High spectral resolution allows baseline separation of adduct ions, which should improve the accuracy and limit of detection for measuring ligand interactions. Data are also presented showing baseline resolution of glycoforms of a highly glycosylated protein, allowing binding of a fragment molecule to be detected. CONCLUSIONS: The high sensitivity and spectral resolution achievable with the Orbitrap technology confer significant advantages over TOF mass spectrometers, and offer a solution to current limitations regarding throughput, data analysis and sample requirements. A further benefit of improved spectral resolution is the possibility of using heterogeneous protein samples such as glycoproteins for fragment screening. This would significantly expand the scope of applicability of non-covalent MS in the pharmaceutical and other industries.


Asunto(s)
Descubrimiento de Drogas/métodos , Espectrometría de Masas/métodos , Proteínas/química , Proteínas/metabolismo , Ligandos , Unión Proteica , Proteínas/análisis
4.
Anal Bioanal Chem ; 406(11): 2627-40, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24633563

RESUMEN

Liquid-chromatography (LC) high-resolution (HR) mass spectrometry (MS) analysis can record HR full scans, a technique of detection that shows comparable selectivity and sensitivity to ion transitions (SRM) performed with triple-quadrupole (TQ)-MS but that allows de facto determination of "all" ions including drug metabolites. This could be of potential utility in in vivo drug metabolism and pharmacovigilance studies in order to have a more comprehensive insight in drug biotransformation profile differences in patients. This simultaneous quantitative and qualitative (Quan/Qual) approach has been tested with 20 patients chronically treated with tamoxifen (TAM). The absolute quantification of TAM and three metabolites in plasma was realized using HR- and TQ-MS and compared. The same LC-HR-MS analysis allowed the identification and relative quantification of 37 additional TAM metabolites. A number of new metabolites were detected in patients' plasma including metabolites identified as didemethyl-trihydroxy-TAM-glucoside and didemethyl-tetrahydroxy-TAM-glucoside conjugates corresponding to TAM with six and seven biotransformation steps, respectively. Multivariate analysis allowed relevant patterns of metabolites and ratios to be associated with TAM administration and CYP2D6 genotype. Two hydroxylated metabolites, α-OH-TAM and 4'-OH-TAM, were newly identified as putative CYP2D6 substrates. The relative quantification was precise (<20 %), and the semiquantitative estimation suggests that metabolite levels are non-negligible. Metabolites could play an important role in drug toxicity, but their impact on drug-related side effects has been partially neglected due to the tremendous effort needed with previous MS technologies. Using present HR-MS, this situation should evolve with the straightforward determination of drug metabolites, enlarging the possibilities in studying inter- and intra-patients drug metabolism variability and related effects.


Asunto(s)
Antineoplásicos/sangre , Neoplasias de la Mama/tratamiento farmacológico , Cromatografía Líquida de Alta Presión/métodos , Monitoreo de Drogas/métodos , Espectrometría de Masas/métodos , Tamoxifeno/sangre , Antineoplásicos/química , Antineoplásicos/metabolismo , Neoplasias de la Mama/sangre , Femenino , Humanos , Estructura Molecular , Farmacología Clínica , Tamoxifeno/química , Tamoxifeno/metabolismo
5.
Rapid Commun Mass Spectrom ; 26(5): 499-509, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22302489

RESUMEN

The capabilities of a high-resolution (HR), accurate mass spectrometer (Exactive-MS) operating in full scan MS mode was investigated for the quantitative LC/MS analysis of drugs in patients' plasma samples. A mass resolution of 50,000 (FWHM) at m/z 200 and a mass extracted window of 5 ppm around the theoretical m/z of each analyte were used to construct chromatograms for quantitation. The quantitative performance of the Exactive-MS was compared with that of a triple quadrupole mass spectrometer (TQ-MS), TSQ Quantum Discovery or Quantum Ultra, operating in the conventional selected reaction monitoring (SRM) mode. The study consisted of 17 therapeutic drugs including 8 antifungal agents (anidulafungin, caspofungin, fluconazole, itraconazole, hydroxyitraconazole posaconazole, voriconazole and voriconazole-N-oxide), 4 immunosuppressants (ciclosporine, everolimus, sirolimus and tacrolimus) and 5 protein kinase inhibitors (dasatinib, imatinib, nilotinib, sorafenib and sunitinib). The quantitative results obtained with HR-MS acquisition show comparable detection specificity, assay precision, accuracy, linearity and sensitivity to SRM acquisition. Importantly, HR-MS offers several benefits over TQ-MS technology: absence of SRM optimization, time saving when changing the analysis from one MS to another, more complete information of what is in the samples and easier troubleshooting. Our work demonstrates that U/HPLC coupled to Exactive HR-MS delivers comparable results to TQ-MS in routine quantitative drug analyses. Considering the advantages of HR-MS, these results suggest that, in the near future, there should be a shift in how routine quantitative analyses of small molecules, particularly for therapeutic drugs, are performed.


Asunto(s)
Antifúngicos/sangre , Inmunosupresores/sangre , Espectrometría de Masas/métodos , Inhibidores de Proteínas Quinasas/sangre , Calibración , Cromatografía Líquida de Alta Presión/métodos , Sensibilidad y Especificidad
6.
Anal Bioanal Chem ; 403(10): 2859-67, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22358998

RESUMEN

This is the first direct analysis in real-time mass spectrometry (DART-MS) study of propolis and a first study on the analysis of bee products using high-resolution DART-MS (DART-HRMS). Identification of flavonoids and other phenolic compounds in propolis using direct analysis in real-time coupling with Orbitrap mass spectrometry (DART-Orbitrap MS) was performed in the negative ion mode for minimizing the matrix effects, while the positive ion mode was used for the confirmation of selected compounds. Possible elemental formulae were suggested for marker components. The duration of one sample analysis by DART-MS analysis lasted ca. 30 s, and all benefits of high-resolution mass spectrometry were used upon data processing using the coupling of DART with the Orbitrap mass spectrometer. The possibility for scanning analysis of dried propolis extract spots on a planar porous surface was investigated in the heated gas flow of the DART ion source with adjustable angle. As an independent method, the approach of scanning analysis is of high interest and of future potential for confirmation of the results obtained from liquid sample analysis. Scanning analysis is highly promising for further development in the bioanalytical field due to the convenience of the storage and transportation of dried sample spots.


Asunto(s)
Espectrometría de Masas/métodos , Fenoles/análisis , Própolis/química , Flavonoides/análisis , Estructura Molecular , Própolis/aislamiento & purificación , Factores de Tiempo
7.
J Agric Food Chem ; 63(21): 5169-77, 2015 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-25620499

RESUMEN

This study used two LC columns of different adsorbents and liquid chromatography-electrospray ionization-high-resolution mass spectrometry to study the relationship between matrix effects (ME), the LC separations, and elution patterns of pesticides and those of matrix components. Using calibration standards of 381 pesticides at three dilution levels of 1×, 1/10×, and 1/100×, 108 samples were prepared in solvent and five different sample matrices for the study. Results obtained from principal component analysis and slope ratios of calibration curves provided measurements of the ME and showed the 1/100× sample dilution could minimize suppression ME for most pesticides analyzed. Should a pesticide coeluting with matrix components have a peak intensity of 25 times or higher, the suppression for that pesticide would persist even at 1/100× dilution. The number of pesticides had enhancement ME increased with increasing dilution from 1× to 1/100×, with those early eluting, hydrophilic pesticides affected the most.


Asunto(s)
Cromatografía Líquida de Alta Presión/instrumentación , Plaguicidas/química , Espectrometría de Masa por Ionización de Electrospray/instrumentación , Técnicas de Dilución del Indicador , Espectrometría de Masas en Tándem
8.
Bioanalysis ; 5(20): 2509-20, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24138624

RESUMEN

BACKGROUND: Hepcidin, a 25 amino acid peptide, plays an important role in iron homeostasis. Some hepcidin truncated peptides have antibiotic effects. RESULTS: A new analytical method for hepcidin determination in human plasma using LC-HRMS operating in full-scan acquisition mode has been validated. The extraction consists of protein precipitation and a drying reconstitution step; a 2.1 x 50 mm (idxL) C18 analytical column was used. Detection specificity, stability, accuracy, precision and recoveries were determined. The LOQ/LOD were 0.25/0.1 nM, respectively. More than 600 injections of plasma extracts were performed, allowing evaluation of the assay robustness. Hepcidin-20, hepcidin-22 and a new isoform, hepcidin-24, were detected in patients. CONCLUSION: The data underscore the usefulness of LC-HRMS for in-depth investigations related to hepcidin levels and pathways.


Asunto(s)
Cromatografía Liquida/normas , Hepcidinas/sangre , Espectrometría de Masas/normas , Secuencia de Aminoácidos , Calibración , Femenino , Humanos , Masculino , Espectrometría de Masas/métodos , Persona de Mediana Edad , Datos de Secuencia Molecular , Isoformas de Proteínas/sangre , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Microextracción en Fase Sólida
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda