Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Cell Mol Life Sci ; 66(7): 1209-22, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19099189

RESUMEN

The FANCJ family of DNA helicases is emerging as an important group of proteins for the prevention of human disease, cancer, and chromosomal instability. FANCJ was identified by its association with breast cancer, and is implicated in Fanconi Anemia. Proteins with sequence similarity to FANCJ are important for maintenance of genomic stability. Mutations in genes encoding proteins related to FANCJ, designated ChlR1 in human and Chl1p in yeast, result in sister chromatid cohesion defects. Nematodes mutated in dog-1 show germline as well as somatic deletions in genes containing guanine-rich DNA. Rtel knockout mice are embryonic lethal, and embryonic stem cells show telomere loss and chromosomal instability. FANCJ also shares sequence similarity with human XPD and yeast RAD3 helicases required for nucleotide excision repair. The recently solved structure of XPD has provided new insight to the helicase core and accessory domains of sequence related Superfamily 2 helicases. The functions and roles of members of the FANCJ-like helicase family will be discussed.


Asunto(s)
ADN Helicasas/fisiología , Proteínas del Grupo de Complementación de la Anemia de Fanconi/fisiología , Inestabilidad Genómica/fisiología , Secuencia de Aminoácidos , Animales , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/genética , ADN Helicasas/genética , Reparación del ADN/genética , Reparación del ADN/fisiología , Anemia de Fanconi/enzimología , Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Inestabilidad Genómica/genética , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , Conformación Proteica , Telómero/genética , Telómero/fisiología
2.
Mol Biol Cell ; 10(11): 3583-94, 1999 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-10564257

RESUMEN

Cockayne syndrome (CS) is a human genetic disorder characterized by UV sensitivity, developmental abnormalities, and premature aging. Two of the genes involved, CSA and CSB, are required for transcription-coupled repair (TCR), a subpathway of nucleotide excision repair that removes certain lesions rapidly and efficiently from the transcribed strand of active genes. CS proteins have also been implicated in the recovery of transcription after certain types of DNA damage such as those lesions induced by UV light. In this study, site-directed mutations have been introduced to the human CSB gene to investigate the functional significance of the conserved ATPase domain and of a highly acidic region of the protein. The CSB mutant alleles were tested for genetic complementation of UV-sensitive phenotypes in the human CS-B homologue of hamster UV61. In addition, the CSB mutant alleles were tested for their ability to complement the sensitivity of UV61 cells to the carcinogen 4-nitroquinoline-1-oxide (4-NQO), which introduces bulky DNA adducts repaired by global genome repair. Point mutation of a highly conserved glutamic acid residue in ATPase motif II abolished the ability of CSB protein to complement the UV-sensitive phenotypes of survival, RNA synthesis recovery, and gene-specific repair. These data indicate that the integrity of the ATPase domain is critical for CSB function in vivo. Likewise, the CSB ATPase point mutant failed to confer cellular resistance to 4-NQO, suggesting that ATP hydrolysis is required for CSB function in a TCR-independent pathway. On the contrary, a large deletion of the acidic region of CSB protein did not impair the genetic function in the processing of either UV- or 4-NQO-induced DNA damage. Thus the acidic region of CSB is likely to be dispensable for DNA repair, whereas the ATPase domain is essential for CSB function in both TCR-dependent and -independent pathways.


Asunto(s)
Adenosina Trifosfatasas/genética , ADN Helicasas/genética , Reparación del ADN/genética , 4-Nitroquinolina-1-Óxido/farmacología , Adenosina Trifosfatasas/química , Secuencia de Aminoácidos , Animales , Línea Celular , Supervivencia Celular , Células Clonales/efectos de la radiación , Síndrome de Cockayne/genética , Cricetinae , Daño del ADN , ADN Helicasas/química , Enzimas Reparadoras del ADN , Humanos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteínas de Unión a Poli-ADP-Ribosa , Dímeros de Pirimidina/genética , ARN Mensajero/metabolismo , Tetrahidrofolato Deshidrogenasa/genética , Transfección , Rayos Ultravioleta
3.
Nucleic Acids Res ; 27(17): 3557-66, 1999 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-10446247

RESUMEN

Mutations in the WRN gene result in Werner syndrome, an autosomal recessive disease in which many characteristics of aging are accelerated. A probable role in some aspect of DNA metabolism is suggested by the primary sequence of the WRN gene product. A recombinant His-tagged WRN protein (WRNp) was overproduced in insect cells using the baculovirus system and purified to near homogeneity by several chromatographic steps. This purification scheme removes both nuclease and topoisomerase contaminants that persist following a single Ni(2+)affinity chromatography step and allows for unambiguous interpretation of WRNp enzymatic activities on DNA substrates. Purified WRNp has DNA-dependent ATPase and helicase activities consistent with its homology to the RecQ subfamily of proteins. The protein also binds with higher affinity to single-stranded DNA than to double-stranded DNA. However, WRNp has no higher affinity for various types of DNA damage, including adducts formed during 4NQO treatment, than for undamaged DNA. Our results confirm that WRNp has a role in DNA metabolism, although this role does not appear to be the specific recognition of damage in DNA.


Asunto(s)
4-Nitroquinolina-1-Óxido/farmacología , Daño del ADN , ADN Helicasas/genética , ADN Helicasas/aislamiento & purificación , ADN Helicasas/metabolismo , ADN de Cadena Simple/metabolismo , ADN/metabolismo , Adenosina Trifosfatasas/metabolismo , Baculoviridae/genética , ADN Helicasas/química , ADN Complementario/análisis , Exodesoxirribonucleasas , Humanos , Hidrólisis , Cinética , RecQ Helicasas , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Factores de Tiempo , Helicasa del Síndrome de Werner
4.
Nucleic Acids Res ; 28(16): 3151-9, 2000 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-10931931

RESUMEN

Cockayne syndrome (CS) is a human genetic disorder characterized by post-natal growth failure, neurological abnormalities and premature aging. CS cells exhibit high sensitivity to UV light, delayed RNA synthesis recovery after UV irradiation and defective transcription-coupled repair (TCR). Two genetic complementation groups of CS have been identified, designated CS-A and CS-B. The CSB gene encodes a helicase domain and a highly acidic region N-terminal to the helicase domain. This study describes the genetic characterization of a CSB mutant allele encoding a full deletion of the acidic region. We have tested its ability to complement the sensitivity of UV61, the hamster homolog of human CS-B cells, to UV and the genotoxic agent N-acetoxy-2-acetylaminofluorene (NA-AAF). Deleting 39 consecutive amino acids, of which approximately 60% are negatively charged, did not impact on the ability of the protein to complement the sensitive phenotype of UV61 cells to either UV or NA-AAF. Our data indicate that the highly acidic region of CSB is not essential for the TCR and general genome repair pathways of UV- and NA-AAF-induced DNA lesions.


Asunto(s)
Apoptosis , Síndrome de Cockayne/genética , ADN Helicasas/genética , Reparación del ADN , Eliminación de Secuencia , Acetoxiacetilaminofluoreno/farmacología , Secuencia de Aminoácidos , Animales , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Línea Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Cricetinae , ADN Helicasas/metabolismo , Reparación del ADN/efectos de los fármacos , Reparación del ADN/efectos de la radiación , Enzimas Reparadoras del ADN , Prueba de Complementación Genética , Humanos , Datos de Secuencia Molecular , Proteínas de Unión a Poli-ADP-Ribosa , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transfección , Rayos Ultravioleta
5.
Nucleic Acids Res ; 29(13): 2843-9, 2001 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-11433031

RESUMEN

BLM and WRN, the products of the Bloom's and Werner's syndrome genes, are members of the RecQ family of DNA helicases. Although both have been shown previously to unwind simple, partial duplex DNA substrates with 3'-->5' polarity, little is known about the structural features of DNA that determine the substrate specificities of these enzymes. We have compared the substrate specificities of the BLM and WRN proteins using a variety of partial duplex DNA molecules, which are based upon a common core nucleotide sequence. We show that neither BLM nor WRN is capable of unwinding duplex DNA from a blunt-ended terminus or from an internal nick. However, both enzymes efficiently unwind the same blunt-ended duplex containing a centrally located 12 nt single-stranded 'bubble', as well as a synthetic X-structure (a model for the Holliday junction recombination intermediate) in which each 'arm' of the 4-way junction is blunt-ended. Surprisingly, a 3'-tailed duplex, a standard substrate for 3'-->5' helicases, is unwound much less efficiently by BLM and WRN than are the bubble and X-structure substrates. These data show conclusively that a single-stranded 3'-tail is not a structural requirement for unwinding of standard B-form DNA by these helicases. BLM and WRN also both unwind a variety of different forms of G-quadruplex DNA, a structure that can form at guanine-rich sequences present at several genomic loci. Our data indicate that BLM and WRN are atypical helicases that are highly DNA structure specific and have similar substrate specificities. We interpret these data in the light of the genomic instability and hyper-recombination characteristics of cells from individuals with Bloom's or Werner's syndrome.


Asunto(s)
Síndrome de Bloom/enzimología , ADN Helicasas/metabolismo , ADN/química , ADN/metabolismo , Conformación de Ácido Nucleico , Síndrome de Werner/enzimología , Secuencia de Bases , Síndrome de Bloom/genética , Intercambio Genético/genética , ADN/genética , ADN Helicasas/genética , Humanos , Oligodesoxirribonucleótidos/química , Oligodesoxirribonucleótidos/genética , Oligodesoxirribonucleótidos/metabolismo , Especificidad por Sustrato , Síndrome de Werner/genética
6.
Nucleic Acids Res ; 28(12): 2420-30, 2000 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-10871376

RESUMEN

Maintenance of genomic integrity is vital to all organisms. A number of human genetic disorders, including Werner Syndrome, Bloom Syndrome and Rothmund-Thomson Syndrome, exhibit genomic instability with some phenotypic characteristics of premature aging and cancer predisposition. Presumably the aberrant cellular and clinical phenotypes in these disorders arise from defects in important DNA metabolic pathways such as replication, recombination or repair. These syndromes are all characterized by defects in a member of the RecQ family of DNA helicases. To obtain a better understanding of how these enzymes function in DNA metabolic pathways that directly influence chromosomal integrity, we have examined the effects of non-covalent DNA modifications on the catalytic activities of purified Werner (WRN) and Bloom (BLM) DNA helicases. A panel of DNA-binding ligands displaying unique properties for interacting with double helical DNA was tested for their effects on the unwinding activity of WRN and BLM helicases on a partial duplex DNA substrate. The levels of inhibition by a number of these compounds were distinct from previously reported values for viral, prokaryotic and eukaryotic helicases. The results demonstrate that BLM and WRN proteins exhibit similar sensitivity profiles to these DNA-binding ligands and are most potently inhibited by the structurally related minor groove binders distamycin A and netropsin (K(i)

Asunto(s)
Adenosina Trifosfatasas/antagonistas & inhibidores , ADN Helicasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Sustancias Intercalantes/farmacología , Adenosina Trifosfatasas/química , Síndrome de Bloom/enzimología , ADN Helicasas/química , Distamicinas/farmacología , Inhibidores Enzimáticos/química , Exodesoxirribonucleasas , Humanos , Sustancias Intercalantes/química , Cinética , Ligandos , Netropsina/farmacología , RecQ Helicasas , Proteínas Recombinantes/antagonistas & inhibidores , Inhibidores de Topoisomerasa I , Síndrome de Werner/enzimología , Helicasa del Síndrome de Werner
7.
Oncogene ; 19(4): 477-89, 2000 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-10698517

RESUMEN

Cockayne syndrome (CS) is a human autosomal recessive disorder characterized by many neurological and developmental abnormalities. CS cells are defective in the transcription coupled repair (TCR) pathway that removes DNA damage from the transcribed strand of active genes. The individuals suffering from CS do not generally develop cancer but show increased neurodegeneration. Two genetic complementation groups (CS-A and CS-B) have been identified. The lack of cancer formation in CS may be due to selective elimination of cells containing DNA damage by a suicidal pathway. In this study, we have evaluated the role of the CSB gene in UV induced apoptosis in human and hamster cells. The hamster cell line UV61 carries a mutation in the homolog of the human CSB gene. We show that both human CS-B and hamster UV61 cells display increased apoptotic response following UV exposure compared with normal cells. The increased sensitivity of UV61 cells to apoptosis is complemented by the transfection of the wild type human CSB gene. In order to determine which functional domain of the CSB gene participates in the apoptotic pathway, we constructed stable cell lines with different CSB domain disruptions. UV61 cells were stably transfected with the human CSB cDNA containing a point mutation in the highly conserved glutamic acid residue in ATPase motif II. This cell line (UV61/ pc3.1-CSBE646Q) showed the same increased apoptosis as the UV61 cells. In contrast, cells containing a deletion in the acidic domain at the N-terminal end of the CSB protein had no effect on apoptosis. This indicates that the integrity of the ATPase domain of CSB protein is critical for preventing the UV induced apoptotic pathway. In primary human CS-B cells, the induction and stabilization of the p53 protein seems to correlate with their increased apoptotic potential. In contrast, no change in the level of either p53 or activation of mdm2 protein by p53 was observed in hamster UV61 cells after UV exposure. This suggests that the CSB dependent apoptotic pathway can occur independently of the transactivation potential of p53 in hamster cells.


Asunto(s)
Adenosina Trifosfatasas/fisiología , Apoptosis/efectos de la radiación , Síndrome de Cockayne/patología , ADN Helicasas/fisiología , Reparación del ADN/genética , Proteínas Nucleares , Proteínas Proto-Oncogénicas c-bcl-2 , Rayos Ultravioleta , Secuencia de Aminoácidos , Animales , Apoptosis/fisiología , Línea Celular , Síndrome de Cockayne/enzimología , Síndrome de Cockayne/genética , Cricetinae , Cricetulus , ADN/biosíntesis , ADN Helicasas/química , Enzimas Reparadoras del ADN , Genes p53 , Humanos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación Puntual , Proteínas de Unión a Poli-ADP-Ribosa , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas/análisis , Proteínas Proto-Oncogénicas c-mdm2 , Proteínas Proto-Oncogénicas p21(ras)/análisis , ARN/biosíntesis , ARN Polimerasa II/antagonistas & inhibidores , Tolerancia a Radiación/genética , Proteínas Recombinantes de Fusión/fisiología , Eliminación de Secuencia , Activación Transcripcional , Transfección , Proteína p53 Supresora de Tumor/fisiología , Rayos Ultravioleta/efectos adversos , Proteína X Asociada a bcl-2
8.
J Mol Biol ; 235(2): 424-35, 1994 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-8289272

RESUMEN

A site-specific lysine to methionine mutation has been engineered at the invariant Lys35 residue in the ATPase A binding site of the Escherichia coli uvrD gene encoding DNA helicase II. The mutant protein (UvrDK35M) has been purified to apparent homogeneity and characterized. The kcat for DNA-dependent ATP hydrolysis was less than 0.5% that of the wild-type enzyme with no change in the apparent Km for ATP. No unwinding of partial duplex DNA substrates could be detected using the mutant protein. Moreover, the mutant protein inhibited the unwinding reaction catalyzed by the wild-type protein at ratios of mutant enzyme to wild-type enzyme < 1. We conclude that the K35M mutation renders helicase II catalytically inactive as a DNA helicase with little or no effect on the ability of the enzyme to bind ATP, DNA, or other proteins. In vivo complementation assays indicate that the mutant protein cannot substitute for the wild-type protein in methyl-directed mismatch repair, suggesting that the ATPase and/or helicase activity of helicase II is required in this repair pathway. Additional genetic characterization of the uvrDK35M allele, supplied on a plasmid, suggests that expression of the mutant protein, at levels equivalent to that of the wild-type protein, results in a dominant negative phenotype. Expression of lower levels of the mutant protein, both in the presence and absence of wild-type helicase II, results in a constitutive induction of the cellular SOS response and extensive filamentation of cells. This induction of the SOS response is not due to a defect in methyl-directed mismatch repair. Taken together, these data are consistent with the notion that E. coli helicase II may have a role in DNA replication.


Asunto(s)
Adenosina Trifosfatasas/fisiología , ADN Helicasas/fisiología , Replicación del ADN/fisiología , Escherichia coli/enzimología , Genes Bacterianos/genética , Genes Dominantes/genética , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Alelos , Secuencia de Bases , ADN Helicasas/genética , ADN Helicasas/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Fenotipo
9.
Environ Mol Mutagen ; 38(2-3): 227-34, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11746759

RESUMEN

Werner syndrome (WS) is the hallmark premature aging syndrome in which the patients appear much older than their actual chronological age. The disorder is associated with significantly increased genome instability and with transcriptional deficiencies. There has been some uncertainty about whether WS cells are defective in DNA repair. We thus examined repair in vitro in nuclear and mitochondrial DNA. Whereas cellular studies so far do not show significant DNA repair deficiencies, biochemical studies with the Werner protein clearly indicate that it plays a role in DNA repair.


Asunto(s)
Reparación del ADN , Mutagénesis , Síndrome de Werner/genética , Línea Celular , ADN Helicasas/genética , ADN Mitocondrial/genética , Exodesoxirribonucleasas , Humanos , RecQ Helicasas , Helicasa del Síndrome de Werner
10.
J Biol Chem ; 272(1): 572-9, 1997 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-8995299

RESUMEN

Biosynthetic errors and DNA damage introduce mismatches and lesions in DNA that can lead to mutations. These abnormalities are susceptible to correction by a number of DNA repair mechanisms, each of which requires a distinct set of proteins. Escherichia coli DNA helicase II has been demonstrated to function in two DNA repair pathways, methyl-directed mismatch repair and UvrABC-mediated nucleotide excision repair. To define further the role of UvrD in DNA repair a site-specific mutant was characterized. The mutation, uvrDQ251E, resides within helicase motif III, a conserved segment of amino acid homology found in a superfamily of prokaryotic and eukaryotic DNA helicases. The UvrD-Q251E protein failed to complement the mutator and ultraviolet light-sensitive phenotypes of a uvrD deletion strain indicating that the mutant protein is inactive in both mismatch repair and excision repair. Biochemical characterization revealed a significant defect in the ability of the mutant enzyme to initiate unwinding at a nick. The elongation phase of the unwinding reaction was nearly normal. Together, the biochemical and genetic data provide evidence that UvrD-Q251E is dysfunctional because the mutant protein fails to initiate unwinding at the nick(s) used to initiate excision and subsequent repair synthesis. These results provide direct evidence to support the notion that helicase II initiates unwinding from a nick in vivo in mismatch repair and excision repair.


Asunto(s)
Adenosina Trifosfatasas/química , ADN Helicasas/química , Reparación del ADN , Proteínas de Unión al ADN/química , Proteínas Bacterianas/química , Escherichia coli/genética , Proteínas de Escherichia coli , Conformación Proteica , Relación Estructura-Actividad , Rayos Ultravioleta
11.
J Bacteriol ; 177(19): 5612-21, 1995 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-7559350

RESUMEN

Site-directed mutagenesis has been employed to address the functional significance of the highly conserved aspartic and glutamic acid residues present in the Walker B (also called motif II) sequence in Escherichia coli DNA helicase II. Two mutant proteins, UvrDE221Q and UvrDD220NE221Q, were expressed and purified to apparent homogeneity. Biochemical characterization of the DNA-dependent ATPase activity of each mutant protein demonstrated a kcat that was < 0.5% of that of the wild-type protein, with no significant change in the apparent Km for ATP. The E221Q mutant protein exhibited no detectable unwinding of either partial duplex or blunt duplex DNA substrates. The D220NE221Q mutant, however, catalyzed unwinding of both partial duplex and blunt duplex substrates, but at a greatly reduced rate compared with that of the wild-type enzyme. Both mutants were able to bind DNA. Thus, the motif II mutants E221Q and D220NE221Q were able to bind ATP and DNA to the same extent as wild-type helicase II but demonstrate a significant reduction in ATP hydrolysis and helicase functions. The mutant uvrD alleles were also characterized by examining their abilities to complement the mutator and UV light-sensitive phenotypes of a uvrD deletion mutant. Neither the uvrDE221Q nor the uvrDD220NE221Q allele, supplied on a plasmid, was able to complement either phenotype. Further genetic characterization of the mutant uvrD alleles demonstrated that uvrDE221Q confers a dominant negative growth phenotype; the uvrDD220NE221Q allele does not exhibit this effect. The observed difference in effect on viability may reflect the gene products' dissimilar kinetics for unwinding duplex DNA substrates in vitro.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , ADN Helicasas/metabolismo , Reparación del ADN/fisiología , Escherichia coli/enzimología , Mutación , Adenosina Trifosfatasas/genética , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Ácido Aspártico/fisiología , Secuencia de Bases , ADN/metabolismo , ADN Helicasas/genética , ADN de Cadena Simple/metabolismo , Escherichia coli/crecimiento & desarrollo , Escherichia coli/efectos de la radiación , Proteínas de Escherichia coli , Genes Dominantes/genética , Ácido Glutámico/fisiología , Cinética , Datos de Secuencia Molecular , Fenotipo , Eliminación de Secuencia , Rayos Ultravioleta
12.
J Biol Chem ; 271(41): 25360-8, 1996 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-8810301

RESUMEN

To address the functional significance of motif III in Escherichia coli DNA helicase II, the conserved aspartic acid at position 248 was changed to asparagine. UvrDD248N failed to form stable binary complexes with either DNA or ATP. However, UvrDD248N was capable of forming an active ternary complex when both ATP and single-stranded DNA were present. The DNA-stimulated ATPase activity of UvrDD248N was reduced relative to that of wild-type UvrD with no significant change in the apparent Km for ATP. The mutant protein also demonstrated a reduced DNA unwinding activity. The requirement for high concentrations of UvrDD248N to achieve unwinding of long duplex substrates likely reflects the reduced stability of various binary and ternary complexes that must exist in the catalytic cycle of a helicase. The data suggest that motif III may act as an interface between the ATP binding and DNA binding domains of a helicase. The uvrDD248N allele was also characterized in genetic assays. The D248N protein complemented the UV-sensitive phenotype of a uvrD deletion strain to levels nearly equivalent to wild-type helicase II. In contrast, the mutant protein only partially complemented the mutator phenotype. A correlation between the level of genetic complementation and the helicase activity of UvrDD248N is discussed.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , ADN/metabolismo , Escherichia coli/enzimología , Adenosina Trifosfatasas/biosíntesis , Adenosina Trifosfatasas/química , Alelos , Secuencia de Aminoácidos , Asparagina , Ácido Aspártico , Sitios de Unión , ADN Helicasas/química , ADN Helicasas/metabolismo , ADN Viral/metabolismo , Proteínas de Escherichia coli , Cinética , Mutagénesis Sitio-Dirigida , Fragmentos de Péptidos/química , Fragmentos de Péptidos/aislamiento & purificación , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Mapeo Restrictivo , Rayos Ultravioleta
13.
J Biol Chem ; 276(40): 37076-85, 2001 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-11477104

RESUMEN

SecA is an essential ATP-driven motor protein that binds to preproteins and the translocon to promote protein translocation across the eubacterial plasma membrane. Escherichia coli SecA contains seven conserved motifs characteristic of superfamily II of DNA and RNA helicases, and it has been shown previously to possess RNA helicase activity. SecA has also been shown to be an autogenous repressor that binds to its translation initiation region on secM-secA mRNA, thereby blocking and dissociating 30 S ribosomal subunits. Here we show that SecA is an ATP-dependent helicase that unwinds a mimic of the repressor helix of secM-secA mRNA. Mutational analysis of the seven conserved helicase motifs in SecA allowed us to identify mutants that uncouple SecA-dependent protein translocation activity from its helicase activity. Helicase-defective secA mutants displayed normal protein translocation activity and autogenous repression of secA in vivo. Our studies indicate that SecA helicase activity is nonessential and does not appear to be necessary for efficient protein secretion and secA autoregulation.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , ADN Helicasas/metabolismo , Proteínas de Escherichia coli , Escherichia coli/enzimología , Proteínas de Transporte de Membrana/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Traslocación Bacteriana/fisiología , Secuencia Conservada , ADN Helicasas/genética , ADN Bacteriano/química , Escherichia coli/genética , Escherichia coli/metabolismo , Homeostasis , Proteínas de Transporte de Membrana/genética , Datos de Secuencia Molecular , Mutación , Conformación de Ácido Nucleico , Transporte de Proteínas , ARN Bacteriano/metabolismo , Canales de Translocación SEC , Proteína SecA , Homología de Secuencia de Aminoácido
14.
J Biol Chem ; 276(5): 3024-30, 2001 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-11110789

RESUMEN

Bloom syndrome and Werner syndrome are genome instability disorders, which result from mutations in two different genes encoding helicases. Both enzymes are members of the RecQ family of helicases, have a 3' --> 5' polarity, and require a 3' single strand tail. In addition to their activity in unwinding duplex substrates, recent studies show that the two enzymes are able to unwind G2 and G4 tetraplexes, prompting speculation that failure to resolve these structures in Bloom syndrome and Werner syndrome cells may contribute to genome instability. The triple helix is another alternate DNA structure that can be formed by sequences that are widely distributed throughout the human genome. Here we show that purified Bloom and Werner helicases can unwind a DNA triple helix. The reactions are dependent on nucleoside triphosphate hydrolysis and require a free 3' tail attached to the third strand. The two enzymes unwound triplexes without requirement for a duplex extension that would form a fork at the junction of the tail and the triplex. In contrast, a duplex formed by the third strand and a complement to the triplex region was a poor substrate for both enzymes. However, the same duplex was readily unwound when a noncomplementary 5' tail was added to form a forked structure. It seems likely that structural features of the triplex mimic those of a fork and thus support efficient unwinding by the two helicases.


Asunto(s)
Síndrome de Bloom/enzimología , ADN Helicasas/metabolismo , ADN/metabolismo , Desnaturalización de Ácido Nucleico , Síndrome de Werner/enzimología , Sitios de Unión , Humanos , Conformación de Ácido Nucleico
15.
Genes Dev ; 14(8): 907-12, 2000 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-10783163

RESUMEN

Werner syndrome (WS) is the hallmark premature aging disorder in which affected humans appear older than their chronological age. The protein WRNp, defective in WS, has helicase function, DNA-dependent ATPase, and exonuclease activity. Although WRNp functions in nucleic acid metabolism, there is little or no information about the pathways or protein interactions in which it participates. Here we identify Ku70 and Ku86 as proteins that interact with WRNp. Although Ku proteins had no effect on ATPase or helicase activity, they strongly stimulated specific exonuclease activity. These results suggest that WRNp and the Ku complex participate in a common DNA metabolic pathway.


Asunto(s)
Antígenos Nucleares , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Adenosina Trifosfatasas/metabolismo , Animales , Secuencia de Bases , Western Blotting , Línea Celular , Núcleo Celular/metabolismo , Cromatografía de Afinidad , ADN Helicasas/química , Proteínas de Unión al ADN/química , Electroforesis en Gel de Poliacrilamida , Activación Enzimática , Exodesoxirribonucleasas , Exonucleasas/metabolismo , Humanos , Autoantígeno Ku , Datos de Secuencia Molecular , Proteínas Nucleares/química , Pruebas de Precipitina , Unión Proteica , RecQ Helicasas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Helicasa del Síndrome de Werner
16.
J Biol Chem ; 276(48): 44677-87, 2001 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-11572872

RESUMEN

Werner syndrome is a human disorder characterized by premature aging, genomic instability, and abnormal telomere metabolism. The Werner syndrome protein (WRN) is the only known member of the RecQ DNA helicase family that contains a 3' --> 5'-exonuclease. However, it is not known whether both activities coordinate in a biological pathway. Here, we describe DNA structures, forked duplexes containing telomeric repeats, that are substrates for the simultaneous action of both WRN activities. We used these substrates to study the interactions between the WRN helicase and exonuclease on a single DNA molecule. WRN helicase unwinds at the forked end of the substrate, whereas the WRN exonuclease acts at the blunt end. Progression of the WRN exonuclease is inhibited by the action of WRN helicase converting duplex DNA to single strand DNA on forks of various duplex lengths. The WRN helicase and exonuclease act in concert to remove a DNA strand from a long forked duplex that is not completely unwound by the helicase. We analyzed the simultaneous action of WRN activities on the long forked duplex in the presence of the WRN protein partners, replication protein A (RPA), and the Ku70/80 heterodimer. RPA stimulated the WRN helicase, whereas Ku stimulated the WRN exonuclease. In the presence of both RPA and Ku, the WRN helicase activity dominated the exonuclease activity.


Asunto(s)
Antígenos Nucleares , ADN Helicasas/química , ADN Helicasas/metabolismo , Exodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/fisiología , Síndrome de Werner/metabolismo , Secuencia de Bases , Catálisis , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Dimerización , Relación Dosis-Respuesta a Droga , Exodesoxirribonucleasa V , Exonucleasas/metabolismo , Humanos , Cinética , Autoantígeno Ku , Modelos Genéticos , Datos de Secuencia Molecular , Proteínas Nucleares/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , ARN/metabolismo , RecQ Helicasas , Proteínas Recombinantes/metabolismo , Telómero/metabolismo , Factores de Tiempo , Helicasa del Síndrome de Werner
17.
EMBO Rep ; 1(1): 80-4, 2000 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-11256630

RESUMEN

Individuals affected by the autosomal recessive disorder Werner's syndrome (WS) develop many of the symptoms characteristic of premature ageing. Primary fibroblasts cultured from WS patients exhibit karyotypic abnormalities and a reduced replicative life span. The WRN gene encodes a 3'-5' DNA helicase, and is a member of the RecQ family, which also includes the product of the Bloom's syndrome gene (BLM). In this work, we show that WRN promotes the ATP-dependent translocation of Holliday junctions, an activity that is also exhibited by BLM. In cells arrested in S-phase with hydroxyurea, WRN localizes to discrete nuclear foci that coincide with those formed by the single-stranded DNA binding protein replication protein A. These results are consistent with a model in which WRN prevents aberrant recombination events at sites of stalled replication forks by dissociating recombination intermediates.


Asunto(s)
ADN Helicasas/metabolismo , Replicación del ADN , ADN/metabolismo , Recombinación Genética , Síndrome de Werner/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Núcleo Celular/metabolismo , ADN/genética , ADN Helicasas/genética , Exodesoxirribonucleasas , Células HeLa , Humanos , Microscopía Fluorescente , RecQ Helicasas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Síndrome de Werner/genética , Helicasa del Síndrome de Werner
18.
EMBO J ; 20(20): 5791-801, 2001 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-11598021

RESUMEN

Werner syndrome (WS) is a human premature aging disorder characterized by chromosomal instability. The cellular defects of WS presumably reflect compromised or aberrant function of a DNA metabolic pathway that under normal circumstances confers stability to the genome. We report a novel interaction of the WRN gene product with the human 5' flap endonuclease/5'-3' exonuclease (FEN-1), a DNA structure-specific nuclease implicated in DNA replication, recombination and repair. WS protein (WRN) dramatically stimulates the rate of FEN-1 cleavage of a 5' flap DNA substrate. The WRN-FEN-1 functional interaction is independent of WRN catalytic function and mediated by a 144 amino acid domain of WRN that shares homology with RecQ DNA helicases. A physical interaction between WRN and FEN-1 is demonstrated by their co-immunoprecipitation from HeLa cell lysate and affinity pull-down experiments using a recombinant C-terminal fragment of WRN. The underlying defect of WS is discussed in light of the evidence for the interaction between WRN and FEN-1.


Asunto(s)
ADN Helicasas/fisiología , Endodesoxirribonucleasas/metabolismo , Síndrome de Werner/genética , Adenosina Trifosfatasas/fisiología , Catálisis , ADN/metabolismo , ADN Helicasas/química , Proteínas de Unión al ADN/fisiología , Endodesoxirribonucleasas/química , Activación Enzimática , Exodesoxirribonucleasas , Exonucleasas/fisiología , Endonucleasas de ADN Solapado , Células HeLa , Humanos , Sustancias Macromoleculares , Fragmentos de Péptidos/metabolismo , Antígeno Nuclear de Célula en Proliferación/fisiología , Estructura Terciaria de Proteína , RecQ Helicasas , Proteínas Recombinantes de Fusión/metabolismo , Proteína de Replicación A , Helicasa del Síndrome de Werner
19.
J Biol Chem ; 276(49): 45772-9, 2001 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-11581270

RESUMEN

Cockayne Syndrome (CS) is a human genetic disorder with two complementation groups, CS-A and CS-B. The CSB gene product is involved in transcription-coupled repair of DNA damage but may participate in other pathways of DNA metabolism. The present study investigated the role of different conserved helicase motifs of CSB in base excision repair. Stably transformed human cell lines with site-directed CSB mutations in different motifs within its putative helicase domain were established. We find that CSB null and helicase motif V and VI mutants had greater sensitivity than wild type cells to gamma-radiation. Whole cell extracts from CSB null and motif V/VI mutants had lower activity of 8-hydroxyguanine incision in DNA than wild type cells. Also, 8-hydroxyguanine accumulated more in CSB null and motif VI mutant cells than in wild type cells after exposure to gamma-radiation. We conclude that a deficiency in general genome base excision repair of selective modified DNA base(s) might contribute to CS pathogenesis. Furthermore, whereas the disruption of helicase motifs V or VI results in a CSB phenotype, mutations in other helicase motifs do not cause this effect. The biological functions of CSB in different DNA repair pathways may be mediated by distinct functional motifs of the protein.


Asunto(s)
Síndrome de Cockayne/genética , ADN Helicasas/fisiología , Reparación del ADN/fisiología , ADN/genética , Genoma , Guanina/análogos & derivados , Guanina/química , Secuencia de Aminoácidos , Línea Celular Transformada , ADN Helicasas/química , ADN Helicasas/genética , Enzimas Reparadoras del ADN , Humanos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Estrés Oxidativo , Proteínas de Unión a Poli-ADP-Ribosa
20.
Biochemistry ; 40(50): 15194-202, 2001 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-11735402

RESUMEN

G-Quadruplex DNAs are folded, non-Watson-Crick structures that can form within guanine-rich DNA sequences such as telomeric repeats. Previous studies have identified a series of trisubstituted acridine derivatives that are potent and selective ligands for G-quadruplex DNA. These ligands have been shown previously to inhibit the activity of telomerase, the specialized reverse transcriptase that regulates telomere length. The RecQ family of DNA helicases, which includes the Bloom's (BLM) and Werner's (WRN) syndrome gene products, are apparently unique among cellular helicases in their ability to efficiently disrupt G-quadruplex DNA. This property may be relevant to telomere maintenance, since it is known that the sole budding yeast RecQ helicase, Sgs1p, is required for a telomerase-independent telomere lengthening pathway reminiscent of the "ALT" pathway in human cells. Here, we show that trisubstituted acridine ligands are potent inhibitors of the helicase activity of the BLM and WRN proteins on both G-quadruplex and B-form DNA substrates. Inhibition of helicase activity is associated with both a reduction in the level of binding of the helicase to G-quadruplex DNA and a reduction in the degree to which the G-quadruplex DNA can support DNA-dependent ATPase activity. We discuss these results in the context of the possible utility of trisubstituted acridines as antitumor agents for the disruption of both telomerase-dependent and telomerase-independent telomere maintenance.


Asunto(s)
Adenosina Trifosfatasas/antagonistas & inhibidores , Síndrome de Bloom/enzimología , ADN Helicasas/antagonistas & inhibidores , ADN/farmacología , Síndrome de Werner/enzimología , Acridinas/química , Acridinas/farmacología , Adenosina Trifosfatasas/genética , Antineoplásicos/química , Antineoplásicos/farmacología , Secuencia de Bases , Síndrome de Bloom/genética , ADN/química , ADN Helicasas/genética , Humanos , Técnicas In Vitro , Ligandos , Conformación de Ácido Nucleico , RecQ Helicasas , Telómero/efectos de los fármacos , Síndrome de Werner/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda