Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
Nature ; 586(7828): 292-298, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32999459

RESUMEN

The RecQ DNA helicase WRN is a synthetic lethal target for cancer cells with microsatellite instability (MSI), a form of genetic hypermutability that arises from impaired mismatch repair1-4. Depletion of WRN induces widespread DNA double-strand breaks in MSI cells, leading to cell cycle arrest and/or apoptosis. However, the mechanism by which WRN protects MSI-associated cancers from double-strand breaks remains unclear. Here we show that TA-dinucleotide repeats are highly unstable in MSI cells and undergo large-scale expansions, distinct from previously described insertion or deletion mutations of a few nucleotides5. Expanded TA repeats form non-B DNA secondary structures that stall replication forks, activate the ATR checkpoint kinase, and require unwinding by the WRN helicase. In the absence of WRN, the expanded TA-dinucleotide repeats are susceptible to cleavage by the MUS81 nuclease, leading to massive chromosome shattering. These findings identify a distinct biomarker that underlies the synthetic lethal dependence on WRN, and support the development of therapeutic agents that target WRN for MSI-associated cancers.


Asunto(s)
Roturas del ADN de Doble Cadena , Expansión de las Repeticiones de ADN/genética , Repeticiones de Dinucleótido/genética , Neoplasias/genética , Helicasa del Síndrome de Werner/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Línea Celular Tumoral , Cromosomas Humanos/genética , Cromosomas Humanos/metabolismo , Cromotripsis , División del ADN , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Endonucleasas/metabolismo , Inestabilidad Genómica , Humanos , Recombinasas/metabolismo
2.
J Biol Chem ; 299(3): 102980, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36739951

RESUMEN

Replication of the 30-kilobase genome of SARS-CoV-2, responsible for COVID-19, is a key step in the coronavirus life cycle that requires a set of virally encoded nonstructural proteins such as the highly conserved Nsp13 helicase. However, the features that contribute to catalytic properties of Nsp13 are not well established. Here, we biochemically characterized the purified recombinant SARS-CoV-2 Nsp13 helicase protein, focusing on its catalytic functions, nucleic acid substrate specificity, nucleotide/metal cofactor requirements, and displacement of proteins from RNA molecules proposed to be important for its proofreading role during coronavirus replication. We determined that Nsp13 preferentially interacts with single-stranded DNA compared with single-stranded RNA to unwind a partial duplex helicase substrate. We present evidence for functional cooperativity as a function of Nsp13 concentration, which suggests that oligomerization is important for optimal activity. In addition, under single-turnover conditions, Nsp13 unwound partial duplex RNA substrates of increasing double-stranded regions (16-30 base pairs) with similar efficiency, suggesting the enzyme unwinds processively in this range. We also show Nsp13-catalyzed RNA unwinding is abolished by a site-specific neutralizing linkage in the sugar-phosphate backbone, demonstrating continuity in the helicase-translocating strand is essential for unwinding the partial duplex substrate. Taken together, we demonstrate for the first time that coronavirus helicase Nsp13 disrupts a high-affinity RNA-protein interaction in a unidirectional and ATP-dependent manner. Furthermore, sensitivity of Nsp13 catalytic functions to Mg2+ concentration suggests a regulatory mechanism for ATP hydrolysis, duplex unwinding, and RNA protein remodeling, processes implicated in SARS-CoV-2 replication and proofreading.


Asunto(s)
ARN Polimerasa Dependiente de ARN de Coronavirus , SARS-CoV-2 , Proteínas no Estructurales Virales , Humanos , Adenosina Trifosfato/metabolismo , COVID-19/virología , ARN , SARS-CoV-2/enzimología , SARS-CoV-2/genética , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , ARN Polimerasa Dependiente de ARN de Coronavirus/genética , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo
3.
Mol Cell ; 63(3): 397-407, 2016 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-27477908

RESUMEN

Long noncoding RNAs (lncRNAs) are involved in diverse cellular processes through multiple mechanisms. Here, we describe a previously uncharacterized human lncRNA, CONCR (cohesion regulator noncoding RNA), that is transcriptionally activated by MYC and is upregulated in multiple cancer types. The expression of CONCR is cell cycle regulated, and it is required for cell-cycle progression and DNA replication. Moreover, cells depleted of CONCR show severe defects in sister chromatid cohesion, suggesting an essential role for CONCR in cohesion establishment during cell division. CONCR interacts with and regulates the activity of DDX11, a DNA-dependent ATPase and helicase involved in DNA replication and sister chromatid cohesion. These findings unveil a direct role for an lncRNA in the establishment of sister chromatid cohesion by modulating DDX11 enzymatic activity.


Asunto(s)
Cromátides/metabolismo , Replicación del ADN , ADN de Neoplasias/biosíntesis , Neoplasias/metabolismo , ARN Largo no Codificante/metabolismo , Células A549 , Animales , Apoptosis , Proliferación Celular , Cromátides/genética , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN de Neoplasias/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Células HeLa , Humanos , Ratones Endogámicos BALB C , Ratones Transgénicos , Neoplasias/genética , Neoplasias/patología , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Interferencia de ARN , ARN Largo no Codificante/genética , Factores de Tiempo , Transcripción Genética , Activación Transcripcional , Transfección , Carga Tumoral , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
4.
Bioessays ; 44(8): e2200057, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35751457

RESUMEN

Hereditary breast and ovarian cancers are frequently attributed to germline mutations in the tumor suppressor genes BRCA1 and BRCA2. BRCA1/2 act to repair double-strand breaks (DSBs) and suppress the demise of unstable replication forks. Our work elucidated a dynamic interplay between BRCA2 and the WRN DNA helicase/exonuclease defective in the premature aging disorder Werner syndrome. WRN and BRCA2 participate in complementary pathways to stabilize replication forks in cancer cells, allowing them to proliferate. Whether the functional overlap of WRN and BRCA2 is relevant to replication at gaps between newly synthesized DNA fragments, protection of telomeres, and/or metabolism of secondary DNA structures remain to be determined. Advances in understanding the mechanisms elicited during replication stress have prompted the community to reconsider avenues for cancer therapy. Insights from studies of PARP or topoisomerase inhibitors provide working models for the investigation of WRN's mechanism of action. We discuss these topics, focusing on the implications of the WRN-BRCA2 genetic interaction under conditions of replication stress.


Asunto(s)
Envejecimiento Prematuro , Replicación del ADN , Neoplasias , Síndrome de Werner , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Inestabilidad Cromosómica , ADN Helicasas/química , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Síndrome de Werner/genética , Síndrome de Werner/metabolismo , Helicasa del Síndrome de Werner/genética , Helicasa del Síndrome de Werner/metabolismo
5.
Methods ; 204: 207-214, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34929333

RESUMEN

G-quadruplex (G4) DNA poses a unique obstacle to DNA synthesis during replication or DNA repair due to its unusual structure which deviates significantly from the conventional DNA double helix. A mechanism to overcome the G4 roadblock is provided by the action of a G4-resolving helicase that collaborates with the DNA polymerase to smoothly catalyze polynucleotide synthesis past the unwound G4. In this technique-focused paper, we describe the experimental approaches of the primer extension assay using a G4 DNA template to measure the extent and fidelity of DNA synthesis by a DNA polymerase acting in concert with a G4-resolving DNA helicase. Important parameters pertaining to reaction conditions and controls are discussed to aid in the design of experiments and interpretation of the data obtained. This methodology can be applied in multiple capacities that may depend on the DNA substrate, DNA polymerase, or DNA helicase under investigation.


Asunto(s)
G-Cuádruplex , ADN/química , ADN/genética , ADN Helicasas/genética , ADN Helicasas/metabolismo , Reparación del ADN , Replicación del ADN
6.
Hum Mol Genet ; 29(8): 1292-1309, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32191790

RESUMEN

As the powerhouses of the eukaryotic cell, mitochondria must maintain their genomes which encode proteins essential for energy production. Mitochondria are characterized by guanine-rich DNA sequences that spontaneously form unusual three-dimensional structures known as G-quadruplexes (G4). G4 structures can be problematic for the essential processes of DNA replication and transcription because they deter normal progression of the enzymatic-driven processes. In this study, we addressed the hypothesis that mitochondrial G4 is a source of mutagenesis leading to base-pair substitutions. Our computational analysis of 2757 individual genomes from two Italian population cohorts (SardiNIA and InCHIANTI) revealed a statistically significant enrichment of mitochondrial mutations within sequences corresponding to stable G4 DNA structures. Guided by the computational analysis results, we designed biochemical reconstitution experiments and demonstrated that DNA synthesis by two known mitochondrial DNA polymerases (Pol γ, PrimPol) in vitro was strongly blocked by representative stable G4 mitochondrial DNA structures, which could be overcome in a specific manner by the ATP-dependent G4-resolving helicase Pif1. However, error-prone DNA synthesis by PrimPol using the G4 template sequence persisted even in the presence of Pif1. Altogether, our results suggest that genetic variation is enriched in G-quadruplex regions that impede mitochondrial DNA replication.


Asunto(s)
ADN Helicasas/genética , ADN Polimerasa gamma/genética , ADN Primasa/genética , Replicación del ADN/genética , ADN Polimerasa Dirigida por ADN/genética , G-Cuádruplex , Enzimas Multifuncionales/genética , ADN Mitocondrial/genética , Genoma Mitocondrial/genética , Guanina/metabolismo , Humanos , Italia , Mitocondrias/genética , Mutagénesis/genética , Mutación/genética , Conformación de Ácido Nucleico , Secuenciación Completa del Genoma
7.
Nucleic Acids Res ; 48(16): 9161-9180, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32797166

RESUMEN

FANCJ, a DNA helicase and interacting partner of the tumor suppressor BRCA1, is crucial for the repair of DNA interstrand crosslinks (ICL), a highly toxic lesion that leads to chromosomal instability and perturbs normal transcription. In diploid cells, FANCJ is believed to operate in homologous recombination (HR) repair of DNA double-strand breaks (DSB); however, its precise role and molecular mechanism is poorly understood. Moreover, compensatory mechanisms of ICL resistance when FANCJ is deficient have not been explored. In this work, we conducted a siRNA screen to identify genes of the DNA damage response/DNA repair regime that when acutely depleted sensitize FANCJ CRISPR knockout cells to a low concentration of the DNA cross-linking agent mitomycin C (MMC). One of the top hits from the screen was RAP80, a protein that recruits repair machinery to broken DNA ends and regulates DNA end-processing. Concomitant loss of FANCJ and RAP80 not only accentuates DNA damage levels in human cells but also adversely affects the cell cycle checkpoint, resulting in profound chromosomal instability. Genetic complementation experiments demonstrated that both FANCJ's catalytic activity and interaction with BRCA1 are important for ICL resistance when RAP80 is deficient. The elevated RPA and RAD51 foci in cells co-deficient of FANCJ and RAP80 exposed to MMC are attributed to single-stranded DNA created by Mre11 and CtIP nucleases. Altogether, our cell-based findings together with biochemical studies suggest a critical function of FANCJ to suppress incompletely processed and toxic joint DNA molecules during repair of ICL-induced DNA damage.


Asunto(s)
Proteína BRCA1/genética , Proteínas de Unión al ADN/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Inestabilidad Genómica/genética , Chaperonas de Histonas/genética , ARN Helicasas/genética , Recombinasa Rad51/genética , Inestabilidad Cromosómica/genética , Roturas del ADN de Doble Cadena/efectos de los fármacos , Daño del ADN/genética , Reparación del ADN/genética , Proteínas de Unión al ADN/deficiencia , Técnicas de Inactivación de Genes , Células HeLa , Chaperonas de Histonas/deficiencia , Humanos , Mitomicina/farmacología , Reparación del ADN por Recombinación/genética
8.
Cytogenet Genome Res ; 161(6-7): 285-296, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34469893

RESUMEN

Unique repetitive elements of the eukaryotic genome can be problematic for cellular DNA replication and transcription and pose a source of genomic instability. Human ribosomal DNA (rDNA) exists as repeating units clustered together on several chromosomes. Understanding the molecular mechanisms whereby rDNA interferes with normal genome homeostasis is the subject of this review. We discuss the instability of rDNA as a driver of senescence and the important roles of helicases to suppress its deleterious effects. The propensity of rDNA that is rich in guanine bases to form G-quadruplexes (G4) is discussed and evaluated in disease pathogenesis. Targeting G4 in the ribosomes and other chromosomal loci may represent a useful synthetic lethal approach to combating cancer.


Asunto(s)
ADN Ribosómico/genética , G-Cuádruplex , Genoma Humano/genética , Inestabilidad Genómica , Neoplasias/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , ADN Helicasas/genética , ADN Helicasas/metabolismo , Replicación del ADN/genética , ADN Ribosómico/química , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias/metabolismo
9.
Nucleic Acids Res ; 46(12): 6238-6256, 2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29788478

RESUMEN

Fanconi Anemia (FA) is characterized by bone marrow failure, congenital abnormalities, and cancer. Of over 20 FA-linked genes, FANCJ uniquely encodes a DNA helicase and mutations are also associated with breast and ovarian cancer. fancj-/- cells are sensitive to DNA interstrand cross-linking (ICL) and replication fork stalling drugs. We delineated the molecular defects of two FA patient-derived FANCJ helicase domain mutations. FANCJ-R707C was compromised in dimerization and helicase processivity, whereas DNA unwinding by FANCJ-H396D was barely detectable. DNA binding and ATP hydrolysis was defective for both FANCJ-R707C and FANCJ-H396D, the latter showing greater reduction. Expression of FANCJ-R707C or FANCJ-H396D in fancj-/- cells failed to rescue cisplatin or mitomycin sensitivity. Live-cell imaging demonstrated a significantly compromised recruitment of FANCJ-R707C to laser-induced DNA damage. However, FANCJ-R707C expressed in fancj-/- cells conferred resistance to the DNA polymerase inhibitor aphidicolin, G-quadruplex ligand telomestatin, or DNA strand-breaker bleomycin, whereas FANCJ-H396D failed. Thus, a minimal threshold of FANCJ catalytic activity is required to overcome replication stress induced by aphidicolin or telomestatin, or to repair bleomycin-induced DNA breakage. These findings have implications for therapeutic strategies relying on DNA cross-link sensitivity or heightened replication stress characteristic of cancer cells.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN Helicasas/genética , ADN Helicasas/metabolismo , Reparación del ADN , Replicación del ADN , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , ARN Helicasas/genética , ARN Helicasas/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Animales , Afidicolina/toxicidad , Línea Celular , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Pollos , Cisplatino/toxicidad , ADN de Cadena Simple , Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/química , G-Cuádruplex , Mutación Missense , Oxazoles/toxicidad , ARN Helicasas/química , Recombinasa Rad51/análisis , Recombinasas/genética , Recombinasas/metabolismo , Proteína de Replicación A/metabolismo , Estrés Fisiológico
10.
Proc Natl Acad Sci U S A ; 113(44): 12502-12507, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27791127

RESUMEN

Cockayne syndrome is a neurodegenerative accelerated aging disorder caused by mutations in the CSA or CSB genes. Although the pathogenesis of Cockayne syndrome has remained elusive, recent work implicates mitochondrial dysfunction in the disease progression. Here, we present evidence that loss of CSA or CSB in a neuroblastoma cell line converges on mitochondrial dysfunction caused by defects in ribosomal DNA transcription and activation of the DNA damage sensor poly-ADP ribose polymerase 1 (PARP1). Indeed, inhibition of ribosomal DNA transcription leads to mitochondrial dysfunction in a number of cell lines. Furthermore, machine-learning algorithms predict that diseases with defects in ribosomal DNA (rDNA) transcription have mitochondrial dysfunction, and, accordingly, this is found when factors involved in rDNA transcription are knocked down. Mechanistically, loss of CSA or CSB leads to polymerase stalling at non-B DNA in a neuroblastoma cell line, in particular at G-quadruplex structures, and recombinant CSB can melt G-quadruplex structures. Indeed, stabilization of G-quadruplex structures activates PARP1 and leads to accelerated aging in Caenorhabditis elegans In conclusion, this work supports a role for impaired ribosomal DNA transcription in Cockayne syndrome and suggests that transcription-coupled resolution of secondary structures may be a mechanism to repress spurious activation of a DNA damage response.


Asunto(s)
ADN Helicasas/genética , Enzimas Reparadoras del ADN/genética , ADN de Neoplasias/genética , Proteínas de Unión a Poli-ADP-Ribosa/genética , Factores de Transcripción/genética , Transcripción Genética , Línea Celular Tumoral , Síndrome de Cockayne/genética , Síndrome de Cockayne/metabolismo , Daño del ADN , ADN Helicasas/metabolismo , Reparación del ADN , Enzimas Reparadoras del ADN/metabolismo , ADN de Neoplasias/química , ADN de Neoplasias/metabolismo , ADN Ribosómico/genética , G-Cuádruplex , Técnicas de Silenciamiento del Gen , Humanos , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patología , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Factores de Transcripción/metabolismo
11.
Int J Mol Sci ; 20(12)2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-31208075

RESUMEN

A Special Issue of International Journal of Molecular Sciences (IJMS) is dedicated to mechanisms mediated at the molecular and cellular levels to respond to adverse genomic perturbations and DNA replication stress (https://www [...].


Asunto(s)
Replicación del ADN , ADN/genética , Estrés Fisiológico/genética , Ciclo Celular/genética , ADN/química , Daño del ADN , Reparación del ADN , Epigénesis Genética , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Conformación de Ácido Nucleico
12.
Biochem Soc Trans ; 46(1): 77-95, 2018 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-29273621

RESUMEN

Helicases are molecular motors that play central roles in nucleic acid metabolism. Mutations in genes encoding DNA helicases of the RecQ and iron-sulfur (Fe-S) helicase families are linked to hereditary disorders characterized by chromosomal instabilities, highlighting the importance of these enzymes. Moreover, mono-allelic RecQ and Fe-S helicase mutations are associated with a broad spectrum of cancers. This review will discuss and contrast the specialized molecular functions and biological roles of RecQ and Fe-S helicases in DNA repair, the replication stress response, and the regulation of gene expression, laying a foundation for continued research in these important areas of study.


Asunto(s)
ADN Helicasas/metabolismo , ADN/metabolismo , Proteínas Hierro-Azufre/metabolismo , RecQ Helicasas/metabolismo , Aberraciones Cromosómicas , ADN Helicasas/genética , Humanos , Proteínas Hierro-Azufre/genética , Mutación , Neoplasias/enzimología , Neoplasias/genética , Neoplasias/metabolismo , Unión Proteica , RecQ Helicasas/genética , Especificidad por Sustrato
13.
Am J Med Genet A ; 176(11): 2404-2418, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30216658

RESUMEN

Warsaw breakage syndrome (WBS) is a recently recognized DDX11-related rare cohesinopathy, characterized by severe prenatal and postnatal growth restriction, microcephaly, developmental delay, cochlear anomalies, and sensorineural hearing loss. Only seven cases have been reported in the English literature, and thus the information on the phenotype and genotype of this interesting condition is limited. We provide clinical and molecular information on five additional unrelated patients carrying novel bi-allelic variants in the DDX11 gene, identified via whole exome sequencing. One of the variants was found to be a novel Saudi founder variant. All identified variants were classified as pathogenic or likely pathogenic except for one that was initially classified as a variant of unknown significance (VOUS) (p.Arg378Pro). Functional characterization of this VOUS using heterologous expression of wild type and mutant DDX11 revealed a marked effect on protein stability, thus confirming pathogenicity of this variant. The phenotypic data of the seven WBS reported patients were compared to our patients for further phenotypic delineation. Although all the reported patients had cochlear hypoplasia, one patient also had posterior labyrinthine anomaly. We conclude that while the cardinal clinical features in WBS (microcephaly, growth retardation, and cochlear anomalies) are almost universally present, the breakage phenotype is highly variable and can be absent in some cases. This report further expands the knowledge of the phenotypic and molecular features of WBS.


Asunto(s)
Anomalías Múltiples/genética , Rotura Cromosómica , Secuencia de Aminoácidos , Niño , Preescolar , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/genética , ADN Helicasas/química , ADN Helicasas/genética , Oído Interno/diagnóstico por imagen , Facies , Femenino , Regulación de la Expresión Génica , Humanos , Lactante , Recién Nacido , Imagen por Resonancia Magnética , Masculino , Modelos Moleculares , Fenotipo , Inhibidores de Proteasoma/farmacología , Estabilidad Proteica , Síndrome , Tomografía Computarizada por Rayos X
14.
15.
Nucleic Acids Res ; 44(2): 705-17, 2016 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-26503245

RESUMEN

We present evidence that Tim establishes a physical and functional interaction with DDX11, a super-family 2 iron-sulfur cluster DNA helicase genetically linked to the chromosomal instability disorder Warsaw breakage syndrome. Tim stimulates DDX11 unwinding activity on forked DNA substrates up to 10-fold and on bimolecular anti-parallel G-quadruplex DNA structures and three-stranded D-loop approximately 4-5-fold. Electrophoretic mobility shift assays revealed that Tim enhances DDX11 binding to DNA, suggesting that the observed stimulation derives from an improved ability of DDX11 to interact with the nucleic acid substrate. Surface plasmon resonance measurements indicate that DDX11 directly interacts with Tim. DNA fiber track assays with HeLa cells exposed to hydroxyurea demonstrated that Tim or DDX11 depletion significantly reduced replication fork progression compared to control cells; whereas no additive effect was observed by co-depletion of both proteins. Moreover, Tim and DDX11 are epistatic in promoting efficient resumption of stalled DNA replication forks in hydroxyurea-treated cells. This is consistent with the finding that association of the two endogenous proteins in the cell extract chromatin fraction is considerably increased following hydroxyurea exposure. Overall, our studies provide evidence that Tim and DDX11 physically and functionally interact and act in concert to preserve replication fork progression in perturbed conditions.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , ARN Helicasas DEAD-box/metabolismo , ADN Helicasas/metabolismo , Replicación del ADN , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Secuencia de Bases , Proteínas de Ciclo Celular/genética , ARN Helicasas DEAD-box/genética , ADN/química , ADN/metabolismo , ADN Helicasas/genética , Replicación del ADN/genética , G-Cuádruplex , Células HeLa/efectos de los fármacos , Humanos , Hidroxiurea/farmacología , Péptidos y Proteínas de Señalización Intracelular/genética , Datos de Secuencia Molecular , Conformación de Ácido Nucleico
16.
Nucleic Acids Res ; 44(5): 1989-2006, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26883636

RESUMEN

Guanine-rich DNA strands can fold in vitro into non-canonical DNA structures called G-quadruplexes. These structures may be very stable under physiological conditions. Evidence suggests that G-quadruplex structures may act as 'knots' within genomic DNA, and it has been hypothesized that proteins may have evolved to remove these structures. The first indication of how G-quadruplex structures could be unfolded enzymatically came in the late 1990s with reports that some well-known duplex DNA helicases resolved these structures in vitro. Since then, the number of studies reporting G-quadruplex DNA unfolding by helicase enzymes has rapidly increased. The present review aims to present a general overview of the helicase/G-quadruplex field.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , ADN Helicasas/metabolismo , Exodesoxirribonucleasas/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , G-Cuádruplex , RecQ Helicasas/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/química , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , ADN Helicasas/química , ADN Helicasas/genética , Replicación del ADN , ADN de Cadena Simple/química , ADN de Cadena Simple/genética , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/química , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Expresión Génica , Guanina/química , Guanina/metabolismo , Humanos , RecQ Helicasas/química , RecQ Helicasas/genética , Helicasa del Síndrome de Werner
17.
J Biol Chem ; 291(27): 14324-14339, 2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-27226550

RESUMEN

Mutations in the c10orf2 gene encoding the human mitochondrial DNA replicative helicase Twinkle are linked to several rare genetic diseases characterized by mitochondrial defects. In this study, we have examined the catalytic activity of Twinkle helicase on model replication fork and DNA repair structures. Although Twinkle behaves as a traditional 5' to 3' helicase on conventional forked duplex substrates, the enzyme efficiently dissociates D-loop DNA substrates irrespective of whether it possesses a 5' or 3' single-stranded tailed invading strand. In contrast, we report for the first time that Twinkle branch-migrates an open-ended mobile three-stranded DNA structure with a strong 5' to 3' directionality preference. To determine how well Twinkle handles potential roadblocks to mtDNA replication, we tested the ability of the helicase to unwind substrates with site-specific oxidative DNA lesions or bound by the mitochondrial transcription factor A. Twinkle helicase is inhibited by DNA damage in a unique manner that is dependent on the type of oxidative lesion and the strand in which it resides. Novel single molecule FRET binding and unwinding assays show an interaction of the excluded strand with Twinkle as well as events corresponding to stepwise unwinding and annealing. TFAM inhibits Twinkle unwinding, suggesting other replisome proteins may be required for efficient removal. These studies shed new insight on the catalytic functions of Twinkle on the key DNA structures it would encounter during replication or possibly repair of the mitochondrial genome and how well it tolerates potential roadblocks to DNA unwinding.


Asunto(s)
ADN Helicasas/metabolismo , ADN/metabolismo , Proteínas Mitocondriales/metabolismo , ADN/química , Daño del ADN , Transferencia Resonante de Energía de Fluorescencia , Humanos , Oxidación-Reducción , Especificidad por Sustrato
18.
Methods ; 108: 1-3, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27565743

RESUMEN

In this special Methods collection on DNA helicases, I have solicited articles from leading experts in the field with a priority to gather a defined series of papers on highly relevant topics that encompass biological, biochemical, and biophysical aspects of helicase function. The experimental approaches described provide an opportunity for both new and more experienced scientists to use the information for the design of their own investigations. The reader will find detailed methods for single-molecule studies, novel biochemical experiments, genetic analyses, and cell biological assays in a variety of systems with an emphasis placed on state-of-the-art techniques to measure helicase function. Contributing authors were strongly encouraged to provide a carefully constructed description of the methods employed so that others might use this information in a manner that will be useful for their own particular application and helicase of interest. This special issue of Methods dedicated to DNA helicases offers readers a treasure chest of unique experimental approaches and protocols focused on rapidly developing techniques that are useful for studying both in vivo and in vitro aspects of helicase function.


Asunto(s)
ADN Helicasas/química , ADN Helicasas/genética , ADN/genética , ADN/química , ADN Helicasas/aislamiento & purificación
19.
Methods ; 108: 130-41, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27064001

RESUMEN

The growing number of DNA helicases implicated in hereditary disorders and cancer indicates that this particular class of enzymes plays key roles in genomic stability and cellular homeostasis. Indeed, a large body of work has provided molecular and cellular evidence that helicases act upon a variety of nucleic acid substrates and interact with numerous proteins to enact their functions in replication, DNA repair, recombination, and transcription. Understanding how helicases operate in unique and overlapping pathways is a great challenge to researchers. In this review, we describe a series of experimental approaches and methodologies to identify and characterize DNA helicase inhibitors which collectively provide an alternative and useful strategy to explore their biological significance in cell-based systems. These procedures were used in the discovery of biologically active compounds that inhibited the DNA unwinding function catalyzed by the human WRN helicase-nuclease defective in the premature aging disorder Werner syndrome. We describe in vitro and in vivo experimental approaches to characterize helicase inhibitors with WRN as the model, anticipating that these approaches may be extrapolated to other DNA helicases, particularly those implicated in DNA repair and/or the replication stress response.


Asunto(s)
Bioensayo/métodos , ADN Helicasas/antagonistas & inhibidores , Replicación del ADN/genética , Inhibidores Enzimáticos/aislamiento & purificación , ADN Helicasas/química , Reparación del ADN/genética , Inhibidores Enzimáticos/química , Humanos , Especificidad por Sustrato
20.
Int J Mol Sci ; 18(6)2017 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-28594346

RESUMEN

Helicases and translocases use the energy of nucleoside triphosphate binding and hydrolysis to unwind/resolve structured nucleic acids or move along a single-stranded or double-stranded polynucleotide chain, respectively. These molecular motors facilitate a variety of transactions including replication, DNA repair, recombination, and transcription. A key partner of eukaryotic DNA helicases/translocases is the single-stranded DNA binding protein Replication Protein A (RPA). Biochemical, genetic, and cell biological assays have demonstrated that RPA interacts with these human molecular motors physically and functionally, and their association is enriched in cells undergoing replication stress. The roles of DNA helicases/translocases are orchestrated with RPA in pathways of nucleic acid metabolism. RPA stimulates helicase-catalyzed DNA unwinding, enlists translocases to sites of action, and modulates their activities in DNA repair, fork remodeling, checkpoint activation, and telomere maintenance. The dynamic interplay between DNA helicases/translocases and RPA is just beginning to be understood at the molecular and cellular levels, and there is still much to be learned, which may inform potential therapeutic strategies.


Asunto(s)
ADN Helicasas/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Ácidos Nucleicos/metabolismo , Proteína de Replicación A/metabolismo , Animales , Puntos de Control del Ciclo Celular , Roturas del ADN de Doble Cadena , Reparación del ADN , Replicación del ADN , ADN de Cadena Simple/química , Proteínas de Unión al ADN/metabolismo , Humanos , Hierro/metabolismo , Conformación de Ácido Nucleico , Ácidos Nucleicos/química , Unión Proteica , Origen de Réplica , Azufre/metabolismo , Telómero/genética , Telómero/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda