RESUMEN
Genome-wide association studies for severe malaria (SM) have identified 30 genetic variants mostly located in non-coding regions. Here, we aimed to identify potential causal genetic variants located in these loci and demonstrate their functional activity. We systematically investigated the regulatory effect of the SNPs in linkage disequilibrium (LD) with the malaria-associated genetic variants. Annotating and prioritizing genetic variants led to the identification of a regulatory region containing five ATP2B4 SNPs in LD with rs10900585. We found significant associations between SM and rs10900585 and our candidate SNPs (rs11240734, rs1541252, rs1541253, rs1541254, and rs1541255) in a Senegalese population. Then, we demonstrated that both individual SNPs and the combination of SNPs had regulatory effects. Moreover, CRISPR/Cas9-mediated deletion of this region decreased ATP2B4 transcript and protein levels and increased Ca2+ intracellular concentration in the K562 cell line. Our data demonstrate that severe malaria-associated genetic variants alter the expression of ATP2B4 encoding a plasma membrane calcium-transporting ATPase 4 (PMCA4) expressed on red blood cells. Altering the activity of this regulatory element affects the risk of SM, likely through calcium concentration effect on parasitaemia.
Asunto(s)
Estudio de Asociación del Genoma Completo , Malaria , Predisposición Genética a la Enfermedad , Humanos , Malaria/genética , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética , Polimorfismo de Nucleótido Simple , Secuencias Reguladoras de Ácidos NucleicosRESUMEN
Cystic fibrosis (CF) is a chronic genetic disease that mainly affects the respiratory and gastrointestinal systems. No curative treatments are available, but the follow-up in specialized centers has greatly improved the patient life expectancy. Robust biomarkers are required to monitor the disease, guide treatments, stratify patients, and provide outcome measures in clinical trials. In the present study, we outline a strategy to select putative DNA methylation biomarkers of lung disease severity in cystic fibrosis patients. In the discovery step, we selected seven potential biomarkers using a genome-wide DNA methylation dataset that we generated in nasal epithelial samples from the MethylCF cohort. In the replication step, we assessed the same biomarkers using sputum cell samples from the MethylBiomark cohort. Of interest, DNA methylation at the cg11702988 site (ATP11A gene) positively correlated with lung function and BMI, and negatively correlated with lung disease severity, P. aeruginosa chronic infection, and the number of exacerbations. These results were replicated in prospective sputum samples collected at four time points within an 18-month period and longitudinally. To conclude, (i) we identified a DNA methylation biomarker that correlates with CF severity, (ii) we provided a method to easily assess this biomarker, and (iii) we carried out the first longitudinal analysis of DNA methylation in CF patients. This new epigenetic biomarker could be used to stratify CF patients in clinical trials.
Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Fibrosis Quística/genética , Metilación de ADN , Análisis de Secuencia de ADN/métodos , Adulto , Estudios de Casos y Controles , Fibrosis Quística/fisiopatología , Epigénesis Genética , Estudio de Asociación del Genoma Completo , Humanos , Estudios Longitudinales , Estudios Prospectivos , Pruebas de Función Respiratoria , Índice de Severidad de la Enfermedad , Esputo/químicaRESUMEN
BACKGROUND: The Barbirostris Complex comprises six formally described species that cannot be differentiated based on morphology alone. Out of these six species, two have been reported as putative malaria vectors, An. campestris and An. wejchoochotei. Five species are present in Thailand, An. barbirostris, An. campestris, An. dissidens, An. saeungae and An. wejchoochotei, while An. vanderwulpi occurs in Indonesia. As these species cannot be accurately differentiated by morphological characters, there is a crucial lack of information on their bionomics and role in the transmission of malaria and filariasis agents. RESULTS: For differentiating the six species, an allele-specific amplification (AS-PCR) based on the second internal transcribed spacer (ITS2) sequence was developed. From 862 mosquitoes in the Barbirostris Complex collected in 23 provinces throughout Thailand, the AS-PCR was able to identify five species and its validation was undertaken on 185 specimens. CONCLUSIONS: This multiplex-PCR assay is potentially able to definitely identify all six species of the Barbirostris Complex and was validated on five species present in Thailand.
Asunto(s)
Anopheles/clasificación , Mosquitos Vectores/clasificación , Reacción en Cadena de la Polimerasa Multiplex , Alelos , Animales , Cartilla de ADN , ADN Espaciador Ribosómico/genética , Femenino , Indonesia , Filogenia , TailandiaRESUMEN
Human antibody (Ab) response to Anopheles whole saliva, used as biomarker of Anopheles exposure, was investigated over a period of two years (2008-2009), in children between 2 to 9 years old, before and after the introduction of three different malaria vector control methods; deltamethrin treated long lasting impregnated nets (LLIN) and insecticide treated plastic sheeting (ITPS)--Zero Fly®) (ITPS-ZF), deltamethrin impregnated Durable (Wall) Lining (ITPS-DL--Zerovector®) alone, and indoor residual spraying (IRS) with lambdacyhalothrin alone. These different vector control methods resulted in considerable decreases in all three entomological (82.4%), parasitological (54.8%) and immunological criteria analyzed. The highest reductions in the number of Anopheles collected and number of positive blood smears, respectively 82.1% and 58.3%, were found in Capango and Canjala where LLIN and ITPS-ZF were implemented. The immunological data based on the level of anti-saliva IgG Ab in children of all villages dropped significantly from 2008 to 2009, except in Chissequele. These results indicated that these three vector control methods significantly reduced malaria infections amongst the children studied and IRS significantly reduced the human-Anopheles contact. The number of Anopheles, positive blood smears, and the levels of anti-saliva IgG Ab were most reduced when LLIN and ITPS-ZF were used in combination, compared to the use of one vector control method alone, either ITPS-DL or IRS. Therefore, as a combination of two vector control methods is significantly more effective than one control method only, this control strategy should be further developed at a more global scale.