Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
BMC Genomics ; 22(1): 624, 2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34416858

RESUMEN

BACKGROUND: Finding meaningful gene-gene interaction and the main Transcription Factors (TFs) in co-expression networks is one of the most important challenges in gene expression data mining. RESULTS: Here, we developed the R package "CeTF" that integrates the Partial Correlation with Information Theory (PCIT) and Regulatory Impact Factors (RIF) algorithms applied to gene expression data from microarray, RNA-seq, or single-cell RNA-seq platforms. This approach allows identifying the transcription factors most likely to regulate a given network in different biological systems - for example, regulation of gene pathways in tumor stromal cells and tumor cells of the same tumor. This pipeline can be easily integrated into the high-throughput analysis. To demonstrate the CeTF package application, we analyzed gastric cancer RNA-seq data obtained from TCGA (The Cancer Genome Atlas) and found the HOXB3 gene as the second most relevant TFs with a high regulatory impact (TFs-HRi) regulating gene pathways in the cell cycle. CONCLUSION: This preliminary finding shows the potential of CeTF to list master regulators of gene networks. CeTF was designed as a user-friendly tool that provides many highly automated functions without requiring the user to perform many complicated processes. It is available on Bioconductor ( http://bioconductor.org/packages/CeTF ) and GitHub ( http://github.com/cbiagii/CeTF ).


Asunto(s)
Teoría de la Información , Factores de Transcripción , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Programas Informáticos , Factores de Transcripción/genética
2.
Tumour Biol ; 42(5): 1010428320918050, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32456563

RESUMEN

Homeobox genes function as master regulatory transcription factors during development, and their expression is often altered in cancer. The HOX gene family was initially studied intensively to understand how the expression of each gene was involved in forming axial patterns and shaping the body plan during embryogenesis. More recent investigations have discovered that HOX genes can also play an important role in cancer. The literature has shown that the expression of HOX genes may be increased or decreased in different tumors and that these alterations may differ depending on the specific HOX gene involved and the type of cancer being investigated. New studies are also emerging, showing the critical role of some members of the HOX gene family in tumor progression and variation in clinical response. However, there has been limited systematic evaluation of the various contributions of each member of the HOX gene family in the pathways that drive the common phenotypic changes (or "hallmarks") and that underlie the transformation of normal cells to cancer cells. In this review, we investigate the context of the engagement of HOX gene targets and their downstream pathways in the acquisition of competence of tumor cells to undergo malignant transformation and tumor progression. We also summarize published findings on the involvement of HOX genes in carcinogenesis and use bioinformatics methods to examine how their downstream targets and pathways are involved in each hallmark of the cancer phenotype.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinogénesis/genética , Genes Homeobox/genética , Neoplasias/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Familia de Multigenes/genética , Factores de Transcripción/genética
3.
BMC Med Genomics ; 13(1): 21, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-32039725

RESUMEN

BACKGROUND: The Hereditary Breast and Ovarian Cancer Syndrome (HBOC) occurs in families with a history of breast/ovarian cancer, presenting an autosomal dominant inheritance pattern. BRCA1 and BRCA2 are high penetrance genes associated with an increased risk of up to 20-fold for breast and ovarian cancer. However, only 20-30% of HBOC cases present pathogenic variants in those genes, and other DNA repair genes have emerged as increasing the risk for HBOC. In Brazil, variants in ATM, ATR, CHEK2, MLH1, MSH2, MSH6, POLQ, PTEN, and TP53 genes have been reported in up to 7.35% of the studied cases. Here we screened and characterized variants in 21 DNA repair genes in HBOC patients. METHODS: We systematically analyzed 708 amplicons encompassing the coding and flanking regions of 21 genes related to DNA repair pathways (ABRAXAS1, ATM, ATR, BARD1, BRCA1, BRCA2, BRIP1, CDH1, CHEK2, MLH1, MRE11, MSH2, MSH6, NBN, PALB2, PMS2, PTEN, RAD50, RAD51, TP53 and UIMC1). A total of 95 individuals with HBOC syndrome clinical suspicion in Southeast Brazil were sequenced, and 25 samples were evaluated for insertions/deletions in BRCA1/BRCA2 genes. Identified variants were assessed in terms of population allele frequency and their functional effects were predicted through in silico algorithms. RESULTS: We identified 80 variants in 19 genes. About 23.4% of the patients presented pathogenic variants in BRCA1, BRCA2 and TP53, a frequency higher than that identified among previous studies in Brazil. We identified a novel variant in ATR, which was predicted as pathogenic by in silico tools. The association analysis revealed 13 missense variants in ABRAXAS1, BARD1, BRCA2, CHEK2, CDH1, MLH1, PALB2, and PMS2 genes, as significantly associated with increased risk to HBOC, and the patients carrying those variants did not present large insertions or deletions in BRCA1/BRCA2 genes. CONCLUSIONS: This study embodies the third report of a multi-gene analysis in the Brazilian population, and addresses the first report of many germline variants associated with HBOC in Brazil. Although further functional analyses are necessary to better characterize the contribution of those variants to the phenotype, these findings would improve the risk estimation and clinical follow-up of patients with HBOC clinical suspicion.


Asunto(s)
Algoritmos , Simulación por Computador , Mutación de Línea Germinal , Síndrome de Cáncer de Mama y Ovario Hereditario/genética , Mutación INDEL , Proteínas de Neoplasias/genética , Adulto , Anciano , Brasil , Femenino , Humanos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda