Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Neurol Sci ; 44(3): 919-930, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36394661

RESUMEN

Down syndrome is a common genetic disorder caused by partial or complete triplication of chromosome 21. This syndrome shows an overall and progressive impairment of olfactory function, detected early in adulthood. The olfactory neuronal cells are located in the nasal olfactory mucosa and represent the first sensory neurons of the olfactory pathway. Herein, we applied the olfactory swabbing procedure to allow a gentle collection of olfactory epithelial cells in seven individuals with Down syndrome and in ten euploid controls. The aim of this research was to investigate the peripheral gene expression pattern in olfactory epithelial cells through RNAseq analysis. Validated tests (Sniffin' Sticks Extended test) were used to assess olfactory function. Olfactory scores were correlated with RNAseq results and cognitive scores (Vineland II and Leiter scales). All Down syndrome individuals showed both olfactory deficit and intellectual disability. Down syndrome individuals and euploid controls exhibited clear expression differences in genes located in and outside the chromosome 21. In addition, a significant correlation was found between olfactory test scores and gene expression, while a non-significant correlation emerged between olfactory and cognitive scores. This first preliminary step gives new insights into the Down syndrome olfactory system research, starting from the olfactory neuroepithelium, the first cellular step on the olfactory way.


Asunto(s)
Síndrome de Down , Trastornos del Olfato , Humanos , Proyectos Piloto , Trastornos del Olfato/etiología , Odorantes , Olfato/fisiología
2.
Brain ; 144(4): 1118-1126, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33855335

RESUMEN

Isolated REM sleep behaviour disorder (RBD) is an early-stage α-synucleinopathy in most, if not all, affected subjects. Detection of pathological α-synuclein in peripheral tissues of patients with isolated RBD may identify those progressing to Parkinson's disease, dementia with Lewy bodies or multiple system atrophy, with the ultimate goal of testing preventive therapies. Real-time quaking-induced conversion (RT-QuIC) provided evidence of α-synuclein seeding activity in CSF and olfactory mucosa of patients with α-synucleinopathies. The aim of this study was to explore RT-QuIC detection of α-synuclein aggregates in olfactory mucosa of a large cohort of subjects with isolated RBD compared to patients with Parkinson's disease and control subjects. This cross-sectional case-control study was performed at the Medical University of Innsbruck, Austria, the Hospital Clinic de Barcelona, Spain, and the University of Verona, Italy. Olfactory mucosa samples obtained by nasal swab in 63 patients with isolated RBD, 41 matched Parkinson's disease patients and 59 matched control subjects were analysed by α-synuclein RT-QuIC in a blinded fashion at the University of Verona, Italy. Median age of patients with isolated RBD was 70 years, 85.7% were male. All participants were tested for smell, autonomic, cognitive and motor functions. Olfactory mucosa was α-synuclein RT-QuIC positive in 44.4% isolated RBD patients, 46.3% Parkinson's disease patients and 10.2% control subjects. While the sensitivity for isolated RBD plus Parkinson's disease versus controls was 45.2%, specificity was high (89.8%). Among isolated RBD patients with positive α-synuclein RT-QuIC, 78.6% had olfactory dysfunction compared to 21.4% with negative α-synuclein RT-QuIC (P < 0.001). The extent of olfactory dysfunction was more severe in isolated RBD patients positive than negative for olfactory mucosa a-synuclein RT-QuIC (P < 0.001). We provide evidence that the α-synuclein RT-QuIC assay enables the molecular detection of neuronal α-synuclein aggregates in olfactory mucosa of patients with isolated RBD and Parkinson's disease. Although the overall sensitivity was moderate in this study, nasal swabbing is attractive as a simple, non-invasive test and might be useful as part of a screening battery to identify subjects in the prodromal stages of α-synucleinopathies. Further studies are needed to enhance sensitivity, and better understand the temporal dynamics of α-synuclein seeding in the olfactory mucosa and spreading to other brain areas during the progression from isolated RBD to overt α-synucleinopathy, as well the impact of timing, disease subgroups and sampling technique on the overall sensitivity.


Asunto(s)
Mucosa Olfatoria/metabolismo , Enfermedad de Parkinson/patología , Trastorno de la Conducta del Sueño REM/patología , alfa-Sinucleína/análisis , Anciano , Biomarcadores/análisis , Biomarcadores/metabolismo , Estudios de Casos y Controles , Estudios Transversales , Diagnóstico Precoz , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/metabolismo , Síntomas Prodrómicos , Trastorno de la Conducta del Sueño REM/metabolismo , Sensibilidad y Especificidad , alfa-Sinucleína/metabolismo
3.
Neurol Sci ; 43(1): 99-104, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34601698

RESUMEN

OBJECTIVE: It is reported that recovery from COVID-19 chemosensory deficit generally occurs in a few weeks, although olfactory dysfunction may persist longer. Here, we provide a detailed follow-up clinical investigation in a very young female patient (17-year-old) with a long-lasting anosmia after a mild infection, with partial recovery 15 months after the onset. METHODS: Neuroimaging and neurophysiologic assessments as well as olfactory mucosa swabbing for microbiological and immunocytochemical analyses were performed. Olfactory and gustatory evaluations were conducted through validated tests. RESULTS: Chemosensory evaluations were consistent with anosmia associated with parosmia phenomena and gustatory impairment, the latter less persistent. Brain MRI (3.0 T) showed no microvascular injury in olfactory bulbs and brain albeit we cannot rule out slight structural abnormalities during the acute phase, and a high-density EEG was negative. Immunocytochemistry of olfactory mucosa swabs showed high expression of ACE2 in sustentacular cells and lower dot-like cytoplasmic positivity in neuronal-shaped cells. DISCUSSION: The occurrence of long-term persistent olfactory deficit in spite of the absence of structural brain and olfactory bulb involvement supports the view of a possible persistent dysfunction of both sustentacular cells and olfactory neurons. The gustatory dysfunction even if less persisting for the described features could be related to a primary gustatory system involvement. Future longitudinal studies are needed to investigate the persistence of chemosensory impairment, which could have a relevant impact on the daily life.


Asunto(s)
COVID-19 , Trastornos del Olfato , Adolescente , Femenino , Humanos , Trastornos del Olfato/etiología , SARS-CoV-2 , Olfato , Trastornos del Gusto
4.
Transl Neurodegener ; 11(1): 37, 2022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-35902902

RESUMEN

BACKGROUND: In patients with Parkinson's disease (PD), real-time quaking-induced conversion (RT-QuIC) detection of pathological α-synuclein (α-syn) in olfactory mucosa (OM) is not as accurate as in other α-synucleinopathies. It is unknown whether these variable results might be related to a different distribution of pathological α-syn in OM. Thus, we investigated whether nasal swab (NS) performed in areas with a different coverage by olfactory neuroepithelium, such as agger nasi (AN) and middle turbinate (MT), might affect the detection of pathological α-syn. METHODS: NS was performed in 66 patients with PD and 29 non-PD between September 2018 and April 2021. In 43 patients, cerebrospinal fluid (CSF) was also obtained and all samples were analyzed by RT-QuIC for α-syn. RESULTS: In the first round, 72 OM samples were collected by NS, from AN (NSAN) or from MT (NSMT), and 35 resulted positive for α-syn RT-QuIC, including 27/32 (84%) from AN, 5/11 (45%) from MT, and 3/29 (10%) belonging to the non-PD patients. Furthermore, 23 additional PD patients underwent NS at both AN and MT, and RT-QuIC revealed α-syn positive in 18/23 (78%) NSAN samples and in 10/23 (44%) NSMT samples. Immunocytochemistry of NS preparations showed a higher representation of olfactory neural cells in NSAN compared to NSMT. We also observed α-syn and phospho-α-syn deposits in NS from PD patients but not in controls. Finally, RT-QuIC was positive in 22/24 CSF samples from PD patients (92%) and in 1/19 non-PD. CONCLUSION: In PD patients, RT-QuIC sensitivity is significantly increased (from 45% to 84%) when NS is performed at AN, indicating that α-syn aggregates are preferentially detected in olfactory areas with higher concentration of olfactory neurons. Although RT-QuIC analysis of CSF showed a higher diagnostic accuracy compared to NS, due to the non-invasiveness, NS might be considered as an ancillary procedure for PD diagnosis.


Asunto(s)
Enfermedad de Parkinson , Sinucleinopatías , Humanos , Mucosa Olfatoria/química , Mucosa Olfatoria/patología , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/patología , Olfato , alfa-Sinucleína/líquido cefalorraquídeo
5.
Front Neurosci ; 14: 145, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32194369

RESUMEN

The olfactory neuroepithelium is located in the upper vault of the nasal cavity, lying on the olfactory cleft and projecting into the dorsal portion of the superior and middle turbinates beyond the mid-portion of the nasal septum. It is composed of a variety of cell types including olfactory sensory neurons, supporting glial-like cells, microvillar cells, and basal stem cells. The cells of the neuroepithelium are often intermingled with respiratory and metaplastic epithelial cells. Olfactory neurons undergo a constant self-renewal in the timespan of 2-3 months; they are directly exposed to the external environment, and thus they are vulnerable to physical and chemical injuries. The latter might induce metabolic perturbations and ultimately be the cause of cell death. However, the lifespan of olfactory neurons is biologically programmed, and for this reason, these cells have an accelerated metabolic cycle leading to an irreversible apoptosis. These characteristics make these cells suitable for research related to nerve cell degeneration and aging. Recent studies have shown that a non-invasive and painless olfactory brushing procedure allows an efficient sampling from the olfactory neuroepithelium. This approach allows to detect the pathologic prion protein in patients with sporadic Creutzfeldt-Jakob disease, using the real-time quaking-induced conversion assay. Investigating the expression of all the proteins associated to neurodegeneration in the cells of the olfactory mucosa is a novel approach toward understanding the pathogenesis of human neurodegenerative diseases. Our aim was to investigate the expression of α-synuclein, ß-amyloid, tau, and TDP-43 in the olfactory neurons of normal subjects. We showed that these proteins that are involved in neurodegenerative diseases are expressed in olfactory neurons. These findings raise the question on whether a relationship exists between the mechanisms of protein aggregation that occur in the olfactory bulb during the early stage of the neurodegenerative process and the protein misfolding occurring in the olfactory neuroepithelium.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda