Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Cell Sci ; 133(9)2020 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-32184266

RESUMEN

Many chromatin remodeling and modifying proteins are involved in the DNA damage response, where they stimulate repair or induce DNA damage signaling. Interestingly, we identified that downregulation of the histone H1 (H1)-interacting protein SET results in increased resistance to a wide variety of DNA damaging agents. We found that this increased resistance does not result from alleviation of an inhibitory effect of SET on DNA repair but, rather, is the consequence of a suppressed apoptotic response to DNA damage. Furthermore, we provide evidence that the histone chaperone SET is responsible for the eviction of H1 from chromatin. Knockdown of H1 in SET-depleted cells resulted in re-sensitization of cells to DNA damage, suggesting that the increased DNA damage resistance in SET-depleted cells is the result of enhanced retention of H1 on chromatin. Finally, clonogenic survival assays showed that SET and p53 act epistatically in the attenuation of DNA damage-induced cell death. Taken together, our data indicate a role for SET in the DNA damage response as a regulator of cell survival following genotoxic stress.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Chaperonas de Histonas , Histonas , Supervivencia Celular/genética , Cromatina/genética , Daño del ADN/genética , Chaperonas de Histonas/genética , Histonas/genética
2.
Nat Genet ; 55(2): 268-279, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36658433

RESUMEN

Gene expression profiling has identified numerous processes altered in aging, but how these changes arise is largely unknown. Here we combined nascent RNA sequencing and RNA polymerase II chromatin immunoprecipitation followed by sequencing to elucidate the underlying mechanisms triggering gene expression changes in wild-type aged mice. We found that in 2-year-old liver, 40% of elongating RNA polymerases are stalled, lowering productive transcription and skewing transcriptional output in a gene-length-dependent fashion. We demonstrate that this transcriptional stress is caused by endogenous DNA damage and explains the majority of gene expression changes in aging in most mainly postmitotic organs, specifically affecting aging hallmark pathways such as nutrient sensing, autophagy, proteostasis, energy metabolism, immune function and cellular stress resilience. Age-related transcriptional stress is evolutionary conserved from nematodes to humans. Thus, accumulation of stochastic endogenous DNA damage during aging deteriorates basal transcription, which establishes the age-related transcriptome and causes dysfunction of key aging hallmark pathways, disclosing how DNA damage functionally underlies major aspects of normal aging.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , Transcriptoma , Humanos , Ratones , Animales , Preescolar , Transcriptoma/genética , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Genoma , Envejecimiento/genética
3.
Aging Cell ; 21(4): e13562, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35246937

RESUMEN

Organs age differently, causing wide heterogeneity in multimorbidity, but underlying mechanisms are largely elusive. To investigate the basis of organ-specific ageing, we utilized progeroid repair-deficient Ercc1Δ/- mouse mutants and systematically compared at the tissue, stem cell and organoid level two organs representing ageing extremes. Ercc1Δ/- intestine shows hardly any accelerated ageing. Nevertheless, we found apoptosis and reduced numbers of intestinal stem cells (ISCs), but cell loss appears compensated by over-proliferation. ISCs retain their organoid-forming capacity, but organoids perform poorly in culture, compared with WT. Conversely, liver ages dramatically, even causing early death in Ercc1-KO mice. Apoptosis, p21, polyploidization and proliferation of various (stem) cells were prominently elevated in Ercc1Δ/- liver and stem cell populations were either largely unaffected (Sox9+), or expanding (Lgr5+), but were functionally exhausted in organoid formation and development in vitro. Paradoxically, while intestine displays less ageing, repair in WT ISCs appears inferior to liver as shown by enhanced sensitivity to various DNA-damaging agents, and lower lesion removal. Our findings reveal organ-specific anti-ageing strategies. Intestine, with short lifespan limiting time for damage accumulation and repair, favours apoptosis of damaged cells relying on ISC plasticity. Liver with low renewal rates depends more on repair pathways specifically protecting the transcribed compartment of the genome to promote sustained functionality and cell preservation. As shown before, the hematopoietic system with intermediate self-renewal mainly invokes replication-linked mechanisms, apoptosis and senescence. Hence, organs employ different genome maintenance strategies, explaining heterogeneity in organ ageing and the segmental nature of DNA-repair-deficient progerias.


Asunto(s)
Envejecimiento , Daño del ADN , Envejecimiento/genética , Envejecimiento/metabolismo , Animales , Daño del ADN/genética , Reparación del ADN , Ratones , Organoides/metabolismo , Células Madre/metabolismo
4.
Sci Adv ; 6(25): eaaz4849, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32596446

RESUMEN

CRISPR-Cas9 systems are enriched in human pathogenic bacteria and have been linked to cytotoxicity by an unknown mechanism. Here, we show that upon infection of human cells, Campylobacter jejuni secretes its Cas9 (CjeCas9) nuclease into their cytoplasm. Next, a native nuclear localization signal enables CjeCas9 nuclear entry, where it catalyzes metal-dependent nonspecific DNA cleavage leading to cell death. Compared to CjeCas9, native Cas9 of Streptococcus pyogenes (SpyCas9) is more suitable for guide-dependent editing. However, in human cells, native SpyCas9 may still cause some DNA damage, most likely because of its ssDNA cleavage activity. This side effect can be completely prevented by saturation of SpyCas9 with an appropriate guide RNA, which is only partially effective for CjeCas9. We conclude that CjeCas9 plays an active role in attacking human cells rather than in viral defense. Moreover, these unique catalytic features may therefore make CjeCas9 less suitable for genome editing applications.


Asunto(s)
Proteína 9 Asociada a CRISPR , Campylobacter jejuni , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas , Campylobacter jejuni/genética , Campylobacter jejuni/metabolismo , ADN/genética , Edición Génica , Humanos , ARN Guía de Kinetoplastida/genética
5.
PLoS One ; 10(4): e0126029, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25927440

RESUMEN

Bladder cancer has a high incidence with significant morbidity and mortality. Attenuated expression of the DNA damage response protein Xeroderma Pigmentosum complementation group C (XPC) has been described in bladder cancer. XPC plays an essential role as the main initiator and damage-detector in global genome nucleotide excision repair (NER) of UV-induced lesions, bulky DNA adducts and intrastrand crosslinks, such as those made by the chemotherapeutic agent Cisplatin. Hence, XPC protein might be an informative biomarker to guide personalized therapy strategies in a subset of bladder cancer cases. Therefore, we measured the XPC protein expression level and functional NER activity of 36 bladder tumors in a standardized manner. We optimized conditions for dissociation and in vitro culture of primary bladder cancer cells and confirmed attenuated XPC expression in approximately 40% of the tumors. However, NER activity was similar to co-cultured wild type cells in all but one of 36 bladder tumors. We conclude, that (i) functional NER deficiency is a relatively rare phenomenon in bladder cancer and (ii) XPC protein levels are not useful as biomarker for NER activity in these tumors.


Asunto(s)
Reparación del ADN , Proteínas de Unión al ADN/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Vejiga Urinaria/genética , Vejiga Urinaria/patología , Xerodermia Pigmentosa/genética , ADN/genética , Proteínas de Unión al ADN/análisis , Humanos , Células Tumorales Cultivadas , Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/patología , Xerodermia Pigmentosa/patología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda