Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Cell ; 169(4): 693-707.e14, 2017 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-28475897

RESUMEN

The spatial organization of chromosomes influences many nuclear processes including gene expression. The cohesin complex shapes the 3D genome by looping together CTCF sites along chromosomes. We show here that chromatin loop size can be increased and that the duration with which cohesin embraces DNA determines the degree to which loops are enlarged. Cohesin's DNA release factor WAPL restricts this loop extension and also prevents looping between incorrectly oriented CTCF sites. We reveal that the SCC2/SCC4 complex promotes the extension of chromatin loops and the formation of topologically associated domains (TADs). Our data support the model that cohesin structures chromosomes through the processive enlargement of loops and that TADs reflect polyclonal collections of loops in the making. Finally, we find that whereas cohesin promotes chromosomal looping, it rather limits nuclear compartmentalization. We conclude that the balanced activity of SCC2/SCC4 and WAPL enables cohesin to correctly structure chromosomes.


Asunto(s)
Proteínas Portadoras/metabolismo , Núcleo Celular/metabolismo , Cromatina/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Acetiltransferasas/metabolismo , Factor de Unión a CCCTC , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN , Elongasas de Ácidos Grasos , Edición Génica , Humanos , Complejos Multiproteicos/metabolismo , Proteínas Represoras/metabolismo , Cohesinas
2.
Immunity ; 54(1): 132-150.e9, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33271119

RESUMEN

HLA class I (HLA-I) glycoproteins drive immune responses by presenting antigens to cognate CD8+ T cells. This process is often hijacked by tumors and pathogens for immune evasion. Because options for restoring HLA-I antigen presentation are limited, we aimed to identify druggable HLA-I pathway targets. Using iterative genome-wide screens, we uncovered that the cell surface glycosphingolipid (GSL) repertoire determines effective HLA-I antigen presentation. We show that absence of the protease SPPL3 augmented B3GNT5 enzyme activity, resulting in upregulation of surface neolacto-series GSLs. These GSLs sterically impeded antibody and receptor interactions with HLA-I and diminished CD8+ T cell activation. Furthermore, a disturbed SPPL3-B3GNT5 pathway in glioma correlated with decreased patient survival. We show that the immunomodulatory effect could be reversed through GSL synthesis inhibition using clinically approved drugs. Overall, our study identifies a GSL signature that inhibits immune recognition and represents a potential therapeutic target in cancer, infection, and autoimmunity.


Asunto(s)
Ácido Aspártico Endopeptidasas/metabolismo , Linfocitos T CD8-positivos/inmunología , Glioma/inmunología , Glicoesfingolípidos/metabolismo , Glicosiltransferasas/metabolismo , Antígenos HLA/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Inmunoterapia/métodos , Presentación de Antígeno , Ácido Aspártico Endopeptidasas/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Glioma/mortalidad , Glicoesfingolípidos/inmunología , Antígenos HLA/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Activación de Linfocitos , Transducción de Señal , Análisis de Supervivencia , Escape del Tumor
3.
Nature ; 621(7977): 171-178, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37648867

RESUMEN

Triacylglycerols (TAGs) are the main source of stored energy in the body, providing an important substrate pool for mitochondrial beta-oxidation. Imbalances in the amount of TAGs are associated with obesity, cardiac disease and various other pathologies1,2. In humans, TAGs are synthesized from excess, coenzyme A-conjugated fatty acids by diacylglycerol O-acyltransferases (DGAT1 and DGAT2)3. In other organisms, this activity is complemented by additional enzymes4, but whether such alternative pathways exist in humans remains unknown. Here we disrupt the DGAT pathway in haploid human cells and use iterative genetics to reveal an unrelated TAG-synthesizing system composed of a protein we called DIESL (also known as TMEM68, an acyltransferase of previously unknown function) and its regulator TMX1. Mechanistically, TMX1 binds to and controls DIESL at the endoplasmic reticulum, and loss of TMX1 leads to the unconstrained formation of DIESL-dependent lipid droplets. DIESL is an autonomous TAG synthase, and expression of human DIESL in Escherichia coli endows this organism with the ability to synthesize TAG. Although both DIESL and the DGATs function as diacylglycerol acyltransferases, they contribute to the cellular TAG pool under specific conditions. Functionally, DIESL synthesizes TAG at the expense of membrane phospholipids and maintains mitochondrial function during periods of extracellular lipid starvation. In mice, DIESL deficiency impedes rapid postnatal growth and affects energy homeostasis during changes in nutrient availability. We have therefore identified an alternative TAG biosynthetic pathway driven by DIESL under potent control by TMX1.


Asunto(s)
Aciltransferasas , Triglicéridos , Animales , Humanos , Ratones , Aciltransferasas/metabolismo , Coenzima A/metabolismo , Diacilglicerol O-Acetiltransferasa/metabolismo , Escherichia coli/metabolismo , Homeostasis , Triglicéridos/biosíntesis , Metabolismo Energético , Nutrientes/metabolismo , Ácidos Grasos/química , Ácidos Grasos/metabolismo
4.
Cell ; 144(5): 782-95, 2011 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-21376238

RESUMEN

During development and regeneration, proliferation of tissue-specific stem cells is tightly controlled to produce organs of a predetermined size. The molecular determinants of this process remain poorly understood. Here, we investigate the function of Yap1, the transcriptional effector of the Hippo signaling pathway, in skin biology. Using gain- and loss-of-function studies, we show that Yap1 is a critical modulator of epidermal stem cell proliferation and tissue expansion. Yap1 mediates this effect through interaction with TEAD transcription factors. Additionally, our studies reveal that α-catenin, a molecule previously implicated in tumor suppression and cell density sensing in the skin, is an upstream negative regulator of Yap1. α-catenin controls Yap1 activity and phosphorylation by modulating its interaction with 14-3-3 and the PP2A phosphatase. Together, these data identify Yap1 as a determinant of the proliferative capacity of epidermal stem cells and as an important effector of a "crowd control" molecular circuitry in mammalian skin.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proliferación Celular , Células Epidérmicas , Fosfoproteínas/metabolismo , alfa Catenina/metabolismo , Proteínas 14-3-3/metabolismo , Animales , Proteínas de Ciclo Celular , Línea Celular , Epidermis/metabolismo , Ratones , Proteínas Señalizadoras YAP
6.
Nature ; 563(7732): 559-563, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30464266

RESUMEN

The zoonotic transmission of hantaviruses from their rodent hosts to humans in North and South America is associated with a severe and frequently fatal respiratory disease, hantavirus pulmonary syndrome (HPS)1,2. No specific antiviral treatments for HPS are available, and no molecular determinants of in vivo susceptibility to hantavirus infection and HPS are known. Here we identify the human asthma-associated gene protocadherin-1 (PCDH1)3-6 as an essential determinant of entry and infection in pulmonary endothelial cells by two hantaviruses that cause HPS, Andes virus (ANDV) and Sin Nombre virus (SNV). In vitro, we show that the surface glycoproteins of ANDV and SNV directly recognize the outermost extracellular repeat domain of PCDH1-a member of the cadherin superfamily7,8-to exploit PCDH1 for entry. In vivo, genetic ablation of PCDH1 renders Syrian golden hamsters highly resistant to a usually lethal ANDV challenge. Targeting PCDH1 could provide strategies to reduce infection and disease caused by New World hantaviruses.


Asunto(s)
Cadherinas/metabolismo , Orthohantavirus/fisiología , Internalización del Virus , Animales , Cadherinas/química , Cadherinas/deficiencia , Cadherinas/genética , Células Endoteliales/virología , Femenino , Orthohantavirus/patogenicidad , Síndrome Pulmonar por Hantavirus/virología , Haploidia , Interacciones Huésped-Patógeno/genética , Humanos , Pulmón/citología , Masculino , Mesocricetus/virología , Dominios Proteicos , Protocadherinas , Virus Sin Nombre/patogenicidad , Virus Sin Nombre/fisiología
7.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33443154

RESUMEN

The journey from plasma membrane to nuclear pore is a critical step in the lifecycle of DNA viruses, many of which must successfully deposit their genomes into the nucleus for replication. Viral capsids navigate this vast distance through the coordinated hijacking of a number of cellular host factors, many of which remain unknown. We performed a gene-trap screen in haploid cells to identify host factors for adenovirus (AdV), a DNA virus that can cause severe respiratory illness in immune-compromised individuals. This work identified Mindbomb 1 (MIB1), an E3 ubiquitin ligase involved in neurodevelopment, as critical for AdV infectivity. In the absence of MIB1, we observed that viral capsids successfully traffic to the proximity of the nucleus but ultimately fail to deposit their genomes within. The capacity of MIB1 to promote AdV infection was dependent on its ubiquitination activity, suggesting that MIB1 may mediate proteasomal degradation of one or more negative regulators of AdV infection. Employing complementary proteomic approaches to characterize proteins proximal to MIB1 upon AdV infection and differentially ubiquitinated in the presence or absence of MIB1, we observed an intersection between MIB1 and ribonucleoproteins (RNPs) largely unexplored in mammalian cells. This work uncovers yet another way that viruses utilize host cell machinery for their own replication, highlighting a potential target for therapeutic interventions that counter AdV infection.


Asunto(s)
Infecciones por Adenoviridae/metabolismo , Adenoviridae/genética , Ubiquitina-Proteína Ligasas/metabolismo , Células A549 , Infecciones por Adenoviridae/genética , Células HEK293 , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Poro Nuclear/metabolismo , Unión Proteica , Proteómica , Ribonucleoproteínas/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/fisiología , Ubiquitinación , Virión/metabolismo , Replicación Viral/fisiología
8.
Nature ; 546(7657): 307-311, 2017 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-28562590

RESUMEN

As key executers of biological functions, the activity and abundance of proteins are subjected to extensive regulation. Deciphering the genetic architecture underlying this regulation is critical for understanding cellular signalling events and responses to environmental cues. Using random mutagenesis in haploid human cells, we apply a sensitive approach to directly couple genomic mutations to protein measurements in individual cells. Here we use this to examine a suite of cellular processes, such as transcriptional induction, regulation of protein abundance and splicing, signalling cascades (mitogen-activated protein kinase (MAPK), G-protein-coupled receptor (GPCR), protein kinase B (AKT), interferon, and Wingless and Int-related protein (WNT) pathways) and epigenetic modifications (histone crotonylation and methylation). This scalable, sequencing-based procedure elucidates the genetic landscapes that control protein states, identifying genes that cause very narrow phenotypic effects and genes that lead to broad phenotypic consequences. The resulting genetic wiring map identifies the E3-ligase substrate adaptor KCTD5 (ref. 1) as a negative regulator of the AKT pathway, a key signalling cascade frequently deregulated in cancer. KCTD5-deficient cells show elevated levels of phospho-AKT at S473 that could not be attributed to effects on canonical pathway components. To reveal the genetic requirements for this phenotype, we iteratively analysed the regulatory network linked to AKT activity in the knockout background. This genetic modifier screen exposes suppressors of the KCTD5 phenotype and mechanistically demonstrates that KCTD5 acts as an off-switch for GPCR signalling by triggering proteolysis of Gßγ heterodimers dissociated from the Gα subunit. Although biological networks have previously been constructed on the basis of gene expression, protein-protein associations, or genetic interaction profiles, we foresee that the approach described here will enable the generation of a comprehensive genetic wiring map for human cells on the basis of quantitative protein states.


Asunto(s)
Canales de Potasio/metabolismo , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/genética , Análisis de la Célula Individual/métodos , Células Cultivadas , Haploidia , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Histonas/química , Histonas/metabolismo , Humanos , Interferones/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mutagénesis , Fenotipo , Fosforilación/genética , Canales de Potasio/deficiencia , Canales de Potasio/genética , Proteolisis , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Vía de Señalización Wnt
9.
Nature ; 549(7670): 106-110, 2017 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-28813410

RESUMEN

The clinical benefit for patients with diverse types of metastatic cancers that has been observed upon blockade of the interaction between PD-1 and PD-L1 has highlighted the importance of this inhibitory axis in the suppression of tumour-specific T-cell responses. Notwithstanding the key role of PD-L1 expression by cells within the tumour micro-environment, our understanding of the regulation of the PD-L1 protein is limited. Here we identify, using a haploid genetic screen, CMTM6, a type-3 transmembrane protein of previously unknown function, as a regulator of the PD-L1 protein. Interference with CMTM6 expression results in impaired PD-L1 protein expression in all human tumour cell types tested and in primary human dendritic cells. Furthermore, through both a haploid genetic modifier screen in CMTM6-deficient cells and genetic complementation experiments, we demonstrate that this function is shared by its closest family member, CMTM4, but not by any of the other CMTM members tested. Notably, CMTM6 increases the PD-L1 protein pool without affecting PD-L1 (also known as CD274) transcription levels. Rather, we demonstrate that CMTM6 is present at the cell surface, associates with the PD-L1 protein, reduces its ubiquitination and increases PD-L1 protein half-life. Consistent with its role in PD-L1 protein regulation, CMTM6 enhances the ability of PD-L1-expressing tumour cells to inhibit T cells. Collectively, our data reveal that PD-L1 relies on CMTM6/4 to efficiently carry out its inhibitory function, and suggest potential new avenues to block this pathway.


Asunto(s)
Antígeno B7-H1/metabolismo , Proteínas con Dominio MARVEL/metabolismo , Antígeno B7-H1/biosíntesis , Antígeno B7-H1/química , Sistemas CRISPR-Cas , Línea Celular Tumoral , Células Dendríticas/metabolismo , Prueba de Complementación Genética , Haploidia , Humanos , Proteínas con Dominio MARVEL/genética , Melanoma/genética , Melanoma/metabolismo , Unión Proteica , Estabilidad Proteica , Ubiquitinación
10.
Nature ; 541(7637): 412-416, 2017 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-28077878

RESUMEN

Picornaviruses are a leading cause of human and veterinary infections that result in various diseases, including polio and the common cold. As archetypical non-enveloped viruses, their biology has been extensively studied. Although a range of different cell-surface receptors are bound by different picornaviruses, it is unclear whether common host factors are needed for them to reach the cytoplasm. Using genome-wide haploid genetic screens, here we identify the lipid-modifying enzyme PLA2G16 (refs 8, 9, 10, 11) as a picornavirus host factor that is required for a previously unknown event in the viral life cycle. We find that PLA2G16 functions early during infection, enabling virion-mediated genome delivery into the cytoplasm, but not in any virion-assigned step, such as cell binding, endosomal trafficking or pore formation. To resolve this paradox, we screened for suppressors of the ΔPLA2G16 phenotype and identified a mechanism previously implicated in the clearance of intracellular bacteria. The sensor of this mechanism, galectin-8 (encoded by LGALS8), detects permeated endosomes and marks them for autophagic degradation, whereas PLA2G16 facilitates viral genome translocation and prevents clearance. This study uncovers two competing processes triggered by virus entry: activation of a pore-activated clearance pathway and recruitment of a phospholipase to enable genome release.


Asunto(s)
Citoplasma/virología , Genoma Viral , Factores Celulares Derivados del Huésped/metabolismo , Fosfolipasas A2 Calcio-Independiente/metabolismo , Picornaviridae/genética , Picornaviridae/fisiología , Proteínas Supresoras de Tumor/metabolismo , Internalización del Virus , Animales , Autofagia , Transporte Biológico , Línea Celular , Citoplasma/genética , Endosomas/metabolismo , Femenino , Galectinas/genética , Galectinas/metabolismo , Factores Celulares Derivados del Huésped/deficiencia , Factores Celulares Derivados del Huésped/genética , Humanos , Masculino , Ratones , Mutación , Fenotipo , Fosfolipasas A2 Calcio-Independiente/deficiencia , Fosfolipasas A2 Calcio-Independiente/genética , Supresión Genética , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/genética , Virión/genética , Virión/metabolismo , Replicación Viral
11.
J Cell Sci ; 131(15)2018 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-30076240

RESUMEN

In order to replicate, most pathogens need to enter their target cells. Many viruses enter the host cell through an endocytic pathway and hijack endosomes for their journey towards sites of replication. For delivery of their genome to the host cell cytoplasm and to avoid degradation, viruses have to escape this endosomal compartment without host detection. Viruses have developed complex mechanisms to penetrate the endosomal membrane and have evolved to co-opt several host factors to facilitate endosomal escape. Conversely, there is an extensive variety of cellular mechanisms to counteract or impede viral replication. At the level of cell entry, there are cellular defense mechanisms that recognize endosomal membrane damage caused by virus-induced membrane fusion and pore formation, as well as restriction factors that block these processes. In this Cell Science at a Glance article and accompanying poster, we describe the different mechanisms that viruses have evolved to escape the endosomal compartment, as well as the counteracting cellular protection mechanisms. We provide examples for enveloped and non-enveloped viruses, for which we discuss some unique and unexpected cellular responses to virus-entry-induced membrane damage.


Asunto(s)
Endosomas/virología , Animales , Humanos , Membranas Intracelulares/virología , Internalización del Virus , Replicación Viral/fisiología , Virus/patogenicidad
12.
J Virol ; 93(13)2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30996093

RESUMEN

Vaccinia virus is a promising viral vaccine and gene delivery candidate and has historically been used as a model to study poxvirus-host cell interactions. We employed a genome-wide insertional mutagenesis approach in human haploid cells to identify host factors crucial for vaccinia virus infection. A library of mutagenized HAP1 cells was exposed to modified vaccinia virus Ankara (MVA). Deep-sequencing analysis of virus-resistant cells identified host factors involved in heparan sulfate synthesis, Golgi organization, and vesicular protein trafficking. We validated EXT1, TM9SF2, and TMED10 (TMP21/p23/p24δ) as important host factors for vaccinia virus infection. The critical roles of EXT1 in heparan sulfate synthesis and vaccinia virus infection were confirmed. TM9SF2 was validated as a player mediating heparan sulfate expression, explaining its contribution to vaccinia virus infection. In addition, TMED10 was found to be crucial for virus-induced plasma membrane blebbing and phosphatidylserine-induced macropinocytosis, presumably by regulating the cell surface expression of the TAM receptor Axl.IMPORTANCE Poxviruses are large DNA viruses that can infect a wide range of host species. A number of these viruses are clinically important to humans, including variola virus (smallpox) and vaccinia virus. Since the eradication of smallpox, zoonotic infections with monkeypox virus and cowpox virus are emerging. Additionally, poxviruses can be engineered to specifically target cancer cells and are used as a vaccine vector against tuberculosis, influenza, and coronaviruses. Poxviruses rely on host factors for most stages of their life cycle, including attachment to the cell and entry. These host factors are crucial for virus infectivity and host cell tropism. We used a genome-wide knockout library of host cells to identify host factors necessary for vaccinia virus infection. We confirm a dominant role for heparin sulfate in mediating virus attachment. Additionally, we show that TMED10, previously not implicated in virus infections, facilitates virus uptake by modulating the cellular response to phosphatidylserine.


Asunto(s)
Haploidia , Heparitina Sulfato/genética , Heparitina Sulfato/aislamiento & purificación , Pinocitosis/fisiología , Virus Vaccinia/genética , Virus Vaccinia/metabolismo , Vaccinia/virología , Proteínas de Transporte Vesicular/metabolismo , Sistemas CRISPR-Cas , Línea Celular Tumoral , Virus de la Viruela Vacuna/genética , Virus ADN , Técnicas de Inactivación de Genes , Pruebas Genéticas , Aparato de Golgi , Células HEK293 , Células HeLa , Heparitina Sulfato/metabolismo , Especificidad del Huésped , Interacciones Huésped-Patógeno , Humanos , Proteínas de la Membrana , Monkeypox virus/genética , N-Acetilglucosaminiltransferasas , Fosfatidilserinas/metabolismo , Poxviridae/genética , Acoplamiento Viral
13.
EMBO J ; 34(24): 2993-3008, 2015 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-26530471

RESUMEN

Although platinum-based drugs are widely used chemotherapeutics for cancer treatment, the determinants of tumor cell responsiveness remain poorly understood. We show that the loss of subunits LRRC8A and LRRC8D of the heteromeric LRRC8 volume-regulated anion channels (VRACs) increased resistance to clinically relevant cisplatin/carboplatin concentrations. Under isotonic conditions, about 50% of cisplatin uptake depended on LRRC8A and LRRC8D, but neither on LRRC8C nor on LRRC8E. Cell swelling strongly enhanced LRRC8-dependent cisplatin uptake, bolstering the notion that cisplatin enters cells through VRAC. LRRC8A disruption also suppressed drug-induced apoptosis independently from drug uptake, possibly by impairing VRAC-dependent apoptotic cell volume decrease. Hence, by mediating cisplatin uptake and facilitating apoptosis, VRAC plays a dual role in the cellular drug response. Incorporation of the LRRC8D subunit into VRAC substantially increased its permeability for cisplatin and the cellular osmolyte taurine, indicating that LRRC8 proteins form the channel pore. Our work suggests that LRRC8D-containing VRACs are crucial for cell volume regulation by an important organic osmolyte and may influence cisplatin/carboplatin responsiveness of tumors.


Asunto(s)
Antineoplásicos/farmacología , Carboplatino/farmacología , Cisplatino/farmacología , Resistencia a Antineoplásicos , Proteínas de la Membrana/metabolismo , Apoptosis , Tamaño de la Célula , Células HCT116 , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo
14.
Proc Natl Acad Sci U S A ; 113(5): 1399-404, 2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26787879

RESUMEN

Enterovirus D68 (EV-D68) is an emerging pathogen that can cause severe respiratory disease and is associated with cases of paralysis, especially among children. Heretofore, information on host factor requirements for EV-D68 infection is scarce. Haploid genetic screening is a powerful tool to reveal factors involved in the entry of pathogens. We performed a genome-wide haploid screen with the EV-D68 prototype Fermon strain to obtain a comprehensive overview of cellular factors supporting EV-D68 infection. We identified and confirmed several genes involved in sialic acid (Sia) biosynthesis, transport, and conjugation to be essential for infection. Moreover, by using knockout cell lines and gene reconstitution, we showed that both α2,6- and α2,3-linked Sia can be used as functional cellular EV-D68 receptors. Importantly, the screen did not reveal a specific protein receptor, suggesting that EV-D68 can use multiple redundant sialylated receptors. Upon testing recent clinical strains, we identified strains that showed a similar Sia dependency, whereas others could infect cells lacking surface Sia, indicating they can use an alternative, nonsialylated receptor. Nevertheless, these Sia-independent strains were still able to bind Sia on human erythrocytes, raising the possibility that these viruses can use multiple receptors. Sequence comparison of Sia-dependent and Sia-independent EV-D68 strains showed that many changes occurred near the canyon that might allow alternative receptor binding. Collectively, our findings provide insights into the identity of the EV-D68 receptor and suggest the possible existence of Sia-independent viruses, which are essential for understanding tropism and disease.


Asunto(s)
Enterovirus Humano D/metabolismo , Receptores Virales/metabolismo , Animales , Línea Celular , Haploidia , Humanos , Receptores Virales/genética
15.
Genome Res ; 24(12): 2059-65, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25373145

RESUMEN

Near-haploid human cell lines are instrumental for genetic screens and genome engineering as gene inactivation is greatly facilitated by the absence of a second gene copy. However, no completely haploid human cell line has been described, hampering the genetic accessibility of a subset of genes. The near-haploid human cell line HAP1 contains a single copy of all chromosomes except for a heterozygous 30-megabase fragment of Chromosome 15. This large fragment encompasses 330 genes and is integrated on the long arm of Chromosome 19. Here, we employ a CRISPR/Cas9-based genome engineering strategy to excise this sizeable chromosomal fragment and to efficiently and reproducibly derive clones that retain their haploid state. Importantly, spectral karyotyping and single-nucleotide polymorphism (SNP) genotyping revealed that engineered-HAPloid (eHAP) cells are fully haploid with no gross chromosomal aberrations induced by Cas9. Furthermore, whole-genome sequence and transcriptome analysis of the parental HAP1 and an eHAP cell line showed that transcriptional changes are limited to the excised Chromosome 15 fragment. Together, we demonstrate the feasibility of efficiently engineering megabase deletions with the CRISPR/Cas9 technology and report the first fully haploid human cell line.


Asunto(s)
Sistemas CRISPR-Cas/genética , Haploidia , Eliminación de Secuencia , Línea Celular , Perfilación de la Expresión Génica , Ingeniería Genética/métodos , Genómica , Humanos , Cariotipo
16.
J Virol ; 90(3): 1414-23, 2016 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-26581979

RESUMEN

UNLABELLED: Rift Valley fever virus (RVFV) causes recurrent insect-borne epizootics throughout the African continent, and infection of humans can lead to a lethal hemorrhagic fever syndrome. Deep mutagenesis of haploid human cells was used to identify host factors required for RVFV infection. This screen identified a suite of enzymes involved in glycosaminoglycan (GAG) biogenesis and transport, including several components of the cis-oligomeric Golgi (COG) complex, one of the central components of Golgi complex trafficking. In addition, disruption of PTAR1 led to RVFV resistance as well as reduced heparan sulfate surface levels, consistent with recent observations that PTAR1-deficient cells exhibit altered Golgi complex morphology and glycosylation defects. A variety of biochemical and genetic approaches were utilized to show that both pathogenic and attenuated RVFV strains require GAGs for efficient infection on some, but not all, cell types, with the block to infection being at the level of virion attachment. Examination of other members of the Bunyaviridae family for GAG-dependent infection suggested that the interaction with GAGs is not universal among bunyaviruses, indicating that these viruses, as well as RVFV on certain cell types, employ additional unidentified virion attachment factors and/or receptors. IMPORTANCE: Rift Valley fever virus (RVFV) is an emerging pathogen that can cause severe disease in humans and animals. Epizootics among livestock populations lead to high mortality rates and can be economically devastating. Human epidemics of Rift Valley fever, often initiated by contact with infected animals, are characterized by a febrile disease that sometimes leads to encephalitis or hemorrhagic fever. The global burden of the pathogen is increasing because it has recently disseminated beyond Africa, which is of particular concern because the virus can be transmitted by widely distributed mosquito species. There are no FDA-licensed vaccines or antiviral agents with activity against RVFV, and details of its life cycle and interaction with host cells are not well characterized. We used the power of genetic screening in human cells and found that RVFV utilizes glycosaminoglycans to attach to host cells. This furthers our understanding of the virus and informs the development of antiviral therapeutics.


Asunto(s)
Proteoglicanos de Heparán Sulfato/metabolismo , Virus de la Fiebre del Valle del Rift/fisiología , Acoplamiento Viral , Línea Celular , Pruebas Genéticas , Proteoglicanos de Heparán Sulfato/genética , Humanos , Mutagénesis
17.
Nature ; 477(7364): 340-3, 2011 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-21866103

RESUMEN

Infections by the Ebola and Marburg filoviruses cause a rapidly fatal haemorrhagic fever in humans for which no approved antivirals are available. Filovirus entry is mediated by the viral spike glycoprotein (GP), which attaches viral particles to the cell surface, delivers them to endosomes and catalyses fusion between viral and endosomal membranes. Additional host factors in the endosomal compartment are probably required for viral membrane fusion; however, despite considerable efforts, these critical host factors have defied molecular identification. Here we describe a genome-wide haploid genetic screen in human cells to identify host factors required for Ebola virus entry. Our screen uncovered 67 mutations disrupting all six members of the homotypic fusion and vacuole protein-sorting (HOPS) multisubunit tethering complex, which is involved in the fusion of endosomes to lysosomes, and 39 independent mutations that disrupt the endo/lysosomal cholesterol transporter protein Niemann-Pick C1 (NPC1). Cells defective for the HOPS complex or NPC1 function, including primary fibroblasts derived from human Niemann-Pick type C1 disease patients, are resistant to infection by Ebola virus and Marburg virus, but remain fully susceptible to a suite of unrelated viruses. We show that membrane fusion mediated by filovirus glycoproteins and viral escape from the vesicular compartment require the NPC1 protein, independent of its known function in cholesterol transport. Our findings uncover unique features of the entry pathway used by filoviruses and indicate potential antiviral strategies to combat these deadly agents.


Asunto(s)
Proteínas Portadoras/metabolismo , Colesterol/metabolismo , Ebolavirus/fisiología , Glicoproteínas de Membrana/metabolismo , Internalización del Virus , Animales , Transporte Biológico , Proteínas Portadoras/genética , Línea Celular , Endosomas/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Fibroblastos/virología , Genoma Humano/genética , Glicoproteínas/metabolismo , Haploidia , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Fiebre Hemorrágica Ebola/metabolismo , Interacciones Huésped-Patógeno/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular , Lisosomas/metabolismo , Enfermedad del Virus de Marburg/tratamiento farmacológico , Enfermedad del Virus de Marburg/metabolismo , Marburgvirus/fisiología , Fusión de Membrana/genética , Fusión de Membrana/fisiología , Glicoproteínas de Membrana/deficiencia , Glicoproteínas de Membrana/genética , Complejos Multiproteicos/química , Complejos Multiproteicos/deficiencia , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Mutación/genética , Proteína Niemann-Pick C1 , Enfermedades de Niemann-Pick/patología , Enfermedades de Niemann-Pick/virología , Receptores Virales/metabolismo , Proteínas de Transporte Vesicular , Proteínas Virales de Fusión/metabolismo
18.
Proc Natl Acad Sci U S A ; 111(17): 6431-6, 2014 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-24737893

RESUMEN

Large glycosylating toxins are major virulence factors of various species of pathogenic Clostridia. Prototypes are Clostridium difficile toxins A and B, which cause antibiotics-associated diarrhea and pseudomembranous colitis. The current model of the toxins' action suggests that receptor binding is mediated by a C-terminal domain of combined repetitive oligopeptides (CROP). This model is challenged by the glycosylating Clostridium perfringens large cytotoxin (TpeL toxin) that is devoid of the CROP domain but still intoxicates cells. Using a haploid genetic screen, we identified LDL receptor-related protein 1 (LRP1) as a host cell receptor for the TpeL toxin. LRP1-deficient cells are not able to take up TpeL and are not intoxicated. Expression of cluster IV of LRP1 is sufficient to rescue toxin uptake in these cells. By plasmon resonance spectroscopy, a KD value of 23 nM was determined for binding of TpeL to LRP1 cluster IV. The C terminus of TpeL (residues 1335-1779) represents the receptor-binding domain (RBD) of the toxin. RBD-like regions are conserved in all other clostridial glycosylating toxins preceding their CROP domain. CROP-deficient C. difficile toxin B is toxic to cells, depending on the RBD-like region (residues 1349-1811) but does not interact with LRP1. Our data indicate the presence of a second, CROP-independent receptor-binding domain in clostridial glycosylating toxins and suggest a two-receptor model for the cellular uptake of clostridial glycosylating toxins.


Asunto(s)
Toxinas Bacterianas/metabolismo , Clostridium perfringens/metabolismo , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Animales , Toxinas Bacterianas/química , Membrana Celular/metabolismo , Embrión de Mamíferos/citología , Endocitosis , Fibroblastos/metabolismo , Pruebas Genéticas , Glicosilación , Haploidia , Células HeLa , Humanos , Ratones , Modelos Biológicos , Unión Proteica , Estructura Terciaria de Proteína
19.
EMBO J ; 31(8): 1947-60, 2012 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-22395071

RESUMEN

Ebola and Marburg filoviruses cause deadly outbreaks of haemorrhagic fever. Despite considerable efforts, no essential cellular receptors for filovirus entry have been identified. We showed previously that Niemann-Pick C1 (NPC1), a lysosomal cholesterol transporter, is required for filovirus entry. Here, we demonstrate that NPC1 is a critical filovirus receptor. Human NPC1 fulfills a cardinal property of viral receptors: it confers susceptibility to filovirus infection when expressed in non-permissive reptilian cells. The second luminal domain of NPC1 binds directly and specifically to the viral glycoprotein, GP, and a synthetic single-pass membrane protein containing this domain has viral receptor activity. Purified NPC1 binds only to a cleaved form of GP that is generated within cells during entry, and only viruses containing cleaved GP can utilize a receptor retargeted to the cell surface. Our findings support a model in which GP cleavage by endosomal cysteine proteases unmasks the binding site for NPC1, and GP-NPC1 engagement within lysosomes promotes a late step in entry proximal to viral escape into the host cytoplasm. NPC1 is the first known viral receptor that recognizes its ligand within an intracellular compartment and not at the plasma membrane.


Asunto(s)
Proteínas Portadoras/metabolismo , Ebolavirus/fisiología , Glicoproteínas de Membrana/metabolismo , Receptores Virales/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus , Animales , Línea Celular , Humanos , Péptidos y Proteínas de Señalización Intracelular , Modelos Biológicos , Modelos Moleculares , Proteína Niemann-Pick C1 , Unión Proteica , Viperidae , Proteínas del Envoltorio Viral/química
20.
Nat Methods ; 10(10): 965-71, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24161985

RESUMEN

Knockout collections are invaluable tools for studying model organisms such as yeast. However, there are no large-scale knockout collections of human cells. Using gene-trap mutagenesis in near-haploid human cells, we established a platform to generate and isolate individual 'gene-trapped cells' and used it to prepare a collection of human cell lines carrying single gene-trap insertions. In most cases, the insertion can be reversed. This growing library covers 3,396 genes, one-third of the expressed genome, is DNA-barcoded and allows systematic screens for a wide variety of cellular phenotypes. We examined cellular responses to TNF-α, TGF-ß, IFN-γ and TNF-related apoptosis-inducing ligand (TRAIL), to illustrate the value of this unique collection of isogenic human cell lines.


Asunto(s)
Biblioteca de Genes , Haploidia , Mutagénesis Insercional/métodos , Genética Inversa/métodos , Línea Celular Tumoral , Genoma Humano , Humanos , Datos de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda