Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nature ; 561(7721): 63-69, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30158707

RESUMEN

Glutamine synthetase, encoded by the gene GLUL, is an enzyme that converts glutamate and ammonia to glutamine. It is expressed by endothelial cells, but surprisingly shows negligible glutamine-synthesizing activity in these cells at physiological glutamine levels. Here we show in mice that genetic deletion of Glul in endothelial cells impairs vessel sprouting during vascular development, whereas pharmacological blockade of glutamine synthetase suppresses angiogenesis in ocular and inflammatory skin disease while only minimally affecting healthy adult quiescent endothelial cells. This relies on the inhibition of endothelial cell migration but not proliferation. Mechanistically we show that in human umbilical vein endothelial cells GLUL knockdown reduces membrane localization and activation of the GTPase RHOJ while activating other Rho GTPases and Rho kinase, thereby inducing actin stress fibres and impeding endothelial cell motility. Inhibition of Rho kinase rescues the defect in endothelial cell migration that is induced by GLUL knockdown. Notably, glutamine synthetase palmitoylates itself and interacts with RHOJ to sustain RHOJ palmitoylation, membrane localization and activation. These findings reveal that, in addition to the known formation of glutamine, the enzyme glutamine synthetase shows unknown activity in endothelial cell migration during pathological angiogenesis through RHOJ palmitoylation.


Asunto(s)
Células Endoteliales/enzimología , Células Endoteliales/patología , Glutamato-Amoníaco Ligasa/metabolismo , Glutamina/biosíntesis , Neovascularización Patológica , Actinas/metabolismo , Animales , Movimiento Celular , Células Endoteliales/metabolismo , Femenino , Glutamato-Amoníaco Ligasa/deficiencia , Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/fisiología , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/enzimología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Lipoilación , Ratones , Ácido Palmítico/metabolismo , Procesamiento Proteico-Postraduccional , Fibras de Estrés/metabolismo , Proteínas de Unión al GTP rho/química , Proteínas de Unión al GTP rho/metabolismo , Quinasas Asociadas a rho/metabolismo
2.
Nature ; 542(7639): 49-54, 2017 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-28024299

RESUMEN

Lymphatic vessels are lined by lymphatic endothelial cells (LECs), and are critical for health. However, the role of metabolism in lymphatic development has not yet been elucidated. Here we report that in transgenic mouse models, LEC-specific loss of CPT1A, a rate-controlling enzyme in fatty acid ß-oxidation, impairs lymphatic development. LECs use fatty acid ß-oxidation to proliferate and for epigenetic regulation of lymphatic marker expression during LEC differentiation. Mechanistically, the transcription factor PROX1 upregulates CPT1A expression, which increases acetyl coenzyme A production dependent on fatty acid ß-oxidation. Acetyl coenzyme A is used by the histone acetyltransferase p300 to acetylate histones at lymphangiogenic genes. PROX1-p300 interaction facilitates preferential histone acetylation at PROX1-target genes. Through this metabolism-dependent mechanism, PROX1 mediates epigenetic changes that promote lymphangiogenesis. Notably, blockade of CPT1 enzymes inhibits injury-induced lymphangiogenesis, and replenishing acetyl coenzyme A by supplementing acetate rescues this process in vivo.


Asunto(s)
Ácidos Grasos/química , Ácidos Grasos/metabolismo , Linfangiogénesis , Vasos Linfáticos/citología , Vasos Linfáticos/metabolismo , Acetatos/farmacología , Acetilcoenzima A/metabolismo , Acetilación/efectos de los fármacos , Animales , Carnitina O-Palmitoiltransferasa/antagonistas & inhibidores , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Epigénesis Genética , Femenino , Histonas/metabolismo , Proteínas de Homeodominio/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Linfangiogénesis/efectos de los fármacos , Linfangiogénesis/genética , Vasos Linfáticos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Oxidación-Reducción/efectos de los fármacos , Biosíntesis de Proteínas , Transcripción Genética , Proteínas Supresoras de Tumor/metabolismo , Arterias Umbilicales/citología , Regulación hacia Arriba
3.
J Am Soc Nephrol ; 33(12): 2259-2275, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35985814

RESUMEN

BACKGROUND: CKD is characterized by a sustained proinflammatory response of the immune system, promoting hypertension and cardiovascular disease. The underlying mechanisms are incompletely understood but may be linked to gut dysbiosis. Dysbiosis has been described in adults with CKD; however, comorbidities limit CKD-specific conclusions. METHODS: We analyzed the fecal microbiome, metabolites, and immune phenotypes in 48 children (with normal kidney function, CKD stage G3-G4, G5 treated by hemodialysis [HD], or kidney transplantation) with a mean±SD age of 10.6±3.8 years. RESULTS: Serum TNF-α and sCD14 were stage-dependently elevated, indicating inflammation, gut barrier dysfunction, and endotoxemia. We observed compositional and functional alterations of the microbiome, including diminished production of short-chain fatty acids. Plasma metabolite analysis revealed a stage-dependent increase of tryptophan metabolites of bacterial origin. Serum from patients on HD activated the aryl hydrocarbon receptor and stimulated TNF-α production in monocytes, corresponding to a proinflammatory shift from classic to nonclassic and intermediate monocytes. Unsupervised analysis of T cells revealed a loss of mucosa-associated invariant T (MAIT) cells and regulatory T cell subtypes in patients on HD. CONCLUSIONS: Gut barrier dysfunction and microbial metabolite imbalance apparently mediate the proinflammatory immune phenotype, thereby driving the susceptibility to cardiovascular disease. The data highlight the importance of the microbiota-immune axis in CKD, irrespective of confounding comorbidities.


Asunto(s)
Enfermedades Cardiovasculares , Microbioma Gastrointestinal , Insuficiencia Renal Crónica , Humanos , Disbiosis/microbiología , Microbioma Gastrointestinal/fisiología , Inflamación , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/terapia , Insuficiencia Renal Crónica/metabolismo , Factor de Necrosis Tumoral alfa , Niño , Adolescente
4.
EMBO J ; 36(16): 2334-2352, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28659375

RESUMEN

Endothelial cell (EC) metabolism is emerging as a regulator of angiogenesis, but the precise role of glutamine metabolism in ECs is unknown. Here, we show that depriving ECs of glutamine or inhibiting glutaminase 1 (GLS1) caused vessel sprouting defects due to impaired proliferation and migration, and reduced pathological ocular angiogenesis. Inhibition of glutamine metabolism in ECs did not cause energy distress, but impaired tricarboxylic acid (TCA) cycle anaplerosis, macromolecule production, and redox homeostasis. Only the combination of TCA cycle replenishment plus asparagine supplementation restored the metabolic aberrations and proliferation defect caused by glutamine deprivation. Mechanistically, glutamine provided nitrogen for asparagine synthesis to sustain cellular homeostasis. While ECs can take up asparagine, silencing asparagine synthetase (ASNS, which converts glutamine-derived nitrogen and aspartate to asparagine) impaired EC sprouting even in the presence of glutamine and asparagine. Asparagine further proved crucial in glutamine-deprived ECs to restore protein synthesis, suppress ER stress, and reactivate mTOR signaling. These findings reveal a novel link between endothelial glutamine and asparagine metabolism in vessel sprouting.


Asunto(s)
Asparagina/metabolismo , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/fisiología , Glutamina/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Medios de Cultivo/química , Células Endoteliales/metabolismo , Glutaminasa/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Redes y Vías Metabólicas , Neovascularización Patológica
5.
Nature ; 520(7546): 192-197, 2015 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-25830893

RESUMEN

The metabolism of endothelial cells during vessel sprouting remains poorly studied. Here we report that endothelial loss of CPT1A, a rate-limiting enzyme of fatty acid oxidation (FAO), causes vascular sprouting defects due to impaired proliferation, not migration, of human and murine endothelial cells. Reduction of FAO in endothelial cells did not cause energy depletion or disturb redox homeostasis, but impaired de novo nucleotide synthesis for DNA replication. Isotope labelling studies in control endothelial cells showed that fatty acid carbons substantially replenished the Krebs cycle, and were incorporated into aspartate (a nucleotide precursor), uridine monophosphate (a precursor of pyrimidine nucleoside triphosphates) and DNA. CPT1A silencing reduced these processes and depleted endothelial cell stores of aspartate and deoxyribonucleoside triphosphates. Acetate (metabolized to acetyl-CoA, thereby substituting for the depleted FAO-derived acetyl-CoA) or a nucleoside mix rescued the phenotype of CPT1A-silenced endothelial cells. Finally, CPT1 blockade inhibited pathological ocular angiogenesis in mice, suggesting a novel strategy for blocking angiogenesis.


Asunto(s)
Carbono/metabolismo , Células Endoteliales/metabolismo , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Nucleótidos/biosíntesis , Ácido Acético/farmacología , Adenosina Trifosfato/metabolismo , Animales , Vasos Sanguíneos/citología , Vasos Sanguíneos/efectos de los fármacos , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patología , Carnitina O-Palmitoiltransferasa/antagonistas & inhibidores , Carnitina O-Palmitoiltransferasa/deficiencia , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ciclo del Ácido Cítrico , ADN/biosíntesis , Modelos Animales de Enfermedad , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/enzimología , Silenciador del Gen , Glucosa/metabolismo , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Ratones , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Nucleótidos/química , Nucleótidos/farmacología , Oxidación-Reducción/efectos de los fármacos , Retinopatía de la Prematuridad/tratamiento farmacológico , Retinopatía de la Prematuridad/metabolismo , Retinopatía de la Prematuridad/patología
6.
Trends Biochem Sci ; 38(1): 3-11, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23200187

RESUMEN

Oxygen-sensing prolyl hydroxylase domain enzymes (PHDs) target hypoxia-inducible factor (HIF)-α subunits for proteasomal degradation in normoxia through hydroxylation. Recently, novel mechanisms of PHD activation and function have been unveiled. Interestingly, PHD3 can unexpectedly amplify HIF signaling through hydroxylation of the glycolytic enzyme pyruvate kinase (PK) muscle isoform 2 (PKM2). Recent studies have also yielded insight into HIF-independent PHD functions, including the control of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor trafficking in synaptic transmission and the activation of transient receptor potential cation channel member A1 (TRPA1) ion channels by oxygen levels in sensory nerves. Finally, PHD activation has been shown to involve the iron chaperoning function of poly(rC) binding protein (PCBP)1 and the (R)-enantiomer of 2-hydroxyglutarate (2-HG). The intersection of these regulatory pathways and interactions highlight the complexity of PHD regulation and function.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Hipoxia/metabolismo , Oxígeno/metabolismo , Procolágeno-Prolina Dioxigenasa/metabolismo , Transducción de Señal , Animales , Humanos
7.
Angiogenesis ; 20(4): 599-613, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28875379

RESUMEN

Blockade of the glycolytic activator PFKFB3 in cancer cells (using a maximum tolerable dose of 70 mg/kg of the PFKFB3 blocker 3PO) inhibits tumor growth in preclinical models and is currently being tested as a novel anticancer treatment in phase I clinical trials. However, a detailed preclinical analysis of the effects of such maximum tolerable dose of a PFKFB3 blocker on the tumor vasculature is lacking, even though tumor endothelial cells are hyper-glycolytic. We report here that a high dose of 3PO (70 mg/kg), which inhibits cancer cell proliferation and reduces primary tumor growth, causes tumor vessel disintegration, suppresses endothelial cell growth for protracted periods, (model-dependently) aggravates tumor hypoxia, and compromises vascular barrier integrity, thereby rendering tumor vessels more leaky and facilitating cancer cell intravasation and dissemination. These findings contrast to the effects of a low dose of 3PO (25 mg/kg), which induces tumor vessel normalization, characterized by vascular barrier tightening and maturation, but reduces cancer cell intravasation and metastasis. Our findings highlight the importance of adequately dosing a glycolytic inhibitor for anticancer treatment.


Asunto(s)
Neoplasias/irrigación sanguínea , Neoplasias/tratamiento farmacológico , Neovascularización Patológica/tratamiento farmacológico , Fosfofructoquinasa-2/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Melanoma Experimental/irrigación sanguínea , Melanoma Experimental/patología , Melanoma Experimental/ultraestructura , Ratones Endogámicos C57BL , Metástasis de la Neoplasia , Neoplasias/patología , Neovascularización Patológica/patología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Fosfofructoquinasa-2/metabolismo , Piridinas/farmacología
8.
Biochem Biophys Res Commun ; 474(3): 579-586, 2016 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-27130823

RESUMEN

Hepatocyte death is an important contributing factor in a number of diseases of the liver. PHD1 confers hypoxic sensitivity upon transcription factors including the hypoxia inducible factor (HIF) and nuclear factor-kappaB (NF-κB). Reduced PHD1 activity is linked to decreased apoptosis. Here, we investigated the underlying mechanism(s) in hepatocytes. Basal NF-κB activity was elevated in PHD1(-/-) hepatocytes compared to wild type controls. ChIP-seq analysis confirmed enhanced binding of NF-κB to chromatin in regions proximal to the promoters of genes involved in the regulation of apoptosis. Inhibition of NF-κB (but not knock-out of HIF-1 or HIF-2) reversed the anti-apoptotic effects of pharmacologic hydroxylase inhibition. We hypothesize that PHD1 inhibition leads to altered expression of NF-κB-dependent genes resulting in reduced apoptosis. This study provides new information relating to the possible mechanism of therapeutic action of hydroxylase inhibitors that has been reported in pre-clinical models of intestinal and hepatic disease.


Asunto(s)
Apoptosis/fisiología , Hepatocitos/citología , Hepatocitos/fisiología , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , FN-kappa B/metabolismo , Procolágeno-Prolina Dioxigenasa/metabolismo , Animales , Hipoxia de la Célula/fisiología , Línea Celular , Regulación Enzimológica de la Expresión Génica/fisiología , Células HEK293 , Humanos , Ratones
10.
Proc Natl Acad Sci U S A ; 110(46): 18490-5, 2013 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-24145445

RESUMEN

Hypoxia is a prominent feature of chronically inflamed tissues. Oxygen-sensing hydroxylases control transcriptional adaptation to hypoxia through the regulation of hypoxia-inducible factor (HIF) and nuclear factor κB (NF-κB), both of which can regulate the inflammatory response. Furthermore, pharmacologic hydroxylase inhibitors reduce inflammation in multiple animal models. However, the underlying mechanism(s) linking hydroxylase activity to inflammatory signaling remains unclear. IL-1ß, a major proinflammatory cytokine that regulates NF-κB, is associated with multiple inflammatory pathologies. We demonstrate that a combination of prolyl hydroxylase 1 and factor inhibiting HIF hydroxylase isoforms regulates IL-1ß-induced NF-κB at the level of (or downstream of) the tumor necrosis factor receptor-associated factor 6 complex. Multiple proteins of the distal IL-1ß-signaling pathway are subject to hydroxylation and form complexes with either prolyl hydroxylase 1 or factor inhibiting HIF. Thus, we hypothesize that hydroxylases regulate IL-1ß signaling and subsequent inflammatory gene expression. Furthermore, hydroxylase inhibition represents a unique approach to the inhibition of IL-1ß-dependent inflammatory signaling.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Hipoxia/fisiopatología , Inflamación/fisiopatología , Oxigenasas de Función Mixta/metabolismo , FN-kappa B/metabolismo , Transducción de Señal/fisiología , Análisis de Varianza , Western Blotting , Células HeLa , Humanos , Hidroxilación , Hipoxia/metabolismo , Inmunoprecipitación , Inflamación/metabolismo , Interleucina-1beta/metabolismo , Luciferasas , Espectrometría de Masas , Prolil Hidroxilasas/metabolismo , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/metabolismo
11.
J Cell Sci ; 126(Pt 6): 1454-63, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23390316

RESUMEN

Activation of the hypoxia-inducible factor (HIF) pathway is a critical step in the transcriptional response to hypoxia. Although many of the key proteins involved have been characterised, the dynamics of their interactions in generating this response remain unclear. In the present study, we have generated a comprehensive mathematical model of the HIF-1α pathway based on core validated components and dynamic experimental data, and confirm the previously described connections within the predicted network topology. Our model confirms previous work demonstrating that the steps leading to optimal HIF-1α transcriptional activity require sequential inhibition of both prolyl- and asparaginyl-hydroxylases. We predict from our model (and confirm experimentally) that there is residual activity of the asparaginyl-hydroxylase FIH (factor inhibiting HIF) at low oxygen tension. Furthermore, silencing FIH under conditions where prolyl-hydroxylases are inhibited results in increased HIF-1α transcriptional activity, but paradoxically decreases HIF-1α stability. Using a core module of the HIF network and mathematical proof supported by experimental data, we propose that asparaginyl hydroxylation confers a degree of resistance upon HIF-1α to proteosomal degradation. Thus, through in vitro experimental data and in silico predictions, we provide a comprehensive model of the dynamic regulation of HIF-1α transcriptional activity by hydroxylases and use its predictive and adaptive properties to explain counter-intuitive biological observations.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Oxigenasas de Función Mixta/metabolismo , Modelos Biológicos , Proteínas Represoras/metabolismo , Biología Computacional , Células HEK293 , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/farmacología , Oxígeno/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Estabilidad Proteica , Proteolisis , ARN Interferente Pequeño/genética , Proteínas Represoras/genética , Proteínas Represoras/farmacología , Transducción de Señal , Activación Transcripcional/genética
12.
Cardiovasc Res ; 120(6): 644-657, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38309955

RESUMEN

AIMS: Virus infection triggers inflammation and, may impose nutrient shortage to the heart. Supported by type I interferon (IFN) signalling, cardiomyocytes counteract infection by various effector processes, with the IFN-stimulated gene of 15 kDa (ISG15) system being intensively regulated and protein modification with ISG15 protecting mice Coxsackievirus B3 (CVB3) infection. The underlying molecular aspects how the ISG15 system affects the functional properties of respective protein substrates in the heart are unknown. METHODS AND RESULTS: Based on the protective properties due to protein ISGylation, we set out a study investigating CVB3-infected mice in depth and found cardiac atrophy with lower cardiac output in ISG15-/- mice. By mass spectrometry, we identified the protein targets of the ISG15 conjugation machinery in heart tissue and explored how ISGylation affects their function. The cardiac ISGylome showed a strong enrichment of ISGylation substrates within glycolytic metabolic processes. Two control enzymes of the glycolytic pathway, hexokinase 2 (HK2) and phosphofructokinase muscle form (PFK1), were identified as bona fide ISGylation targets during infection. In an integrative approach complemented with enzymatic functional testing and structural modelling, we demonstrate that protein ISGylation obstructs the activity of HK2 and PFK1. Seahorse-based investigation of glycolysis in cardiomyocytes revealed that, by conjugating proteins, the ISG15 system prevents the infection-/IFN-induced up-regulation of glycolysis. We complemented our analysis with proteomics-based advanced computational modelling of cardiac energy metabolism. Our calculations revealed an ISG15-dependent preservation of the metabolic capacity in cardiac tissue during CVB3 infection. Functional profiling of mitochondrial respiration in cardiomyocytes and mouse heart tissue by Seahorse technology showed an enhanced oxidative activity in cells with a competent ISG15 system. CONCLUSION: Our study demonstrates that ISG15 controls critical nodes in cardiac metabolism. ISG15 reduces the glucose demand, supports higher ATP production capacity in the heart, despite nutrient shortage in infection, and counteracts cardiac atrophy and dysfunction.


Asunto(s)
Infecciones por Coxsackievirus , Citocinas , Metabolismo Energético , Glucólisis , Mitocondrias Cardíacas , Miocitos Cardíacos , Ubiquitinas , Animales , Humanos , Masculino , Infecciones por Coxsackievirus/metabolismo , Infecciones por Coxsackievirus/virología , Infecciones por Coxsackievirus/genética , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Enterovirus Humano B/patogenicidad , Enterovirus Humano B/metabolismo , Interacciones Huésped-Patógeno , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/virología , Miocitos Cardíacos/patología , Procesamiento Proteico-Postraduccional , Transducción de Señal , Ubiquitinas/metabolismo , Ubiquitinas/genética
13.
Nat Commun ; 15(1): 2788, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38555356

RESUMEN

Hospital-acquired pneumonia (HAP) is associated with high mortality and costs, and frequently caused by multidrug-resistant (MDR) bacteria. Although prior antimicrobial therapy is a major risk factor for HAP, the underlying mechanism remains incompletely understood. Here, we demonstrate that antibiotic therapy in hospitalized patients is associated with decreased diversity of the gut microbiome and depletion of short-chain fatty acid (SCFA) producers. Infection experiments with mice transplanted with patient fecal material reveal that these antibiotic-induced microbiota perturbations impair pulmonary defense against MDR Klebsiella pneumoniae. This is dependent on inflammatory monocytes (IMs), whose fatty acid receptor (FFAR)2/3-controlled and phagolysosome-dependent antibacterial activity is compromized in mice transplanted with antibiotic-associated patient microbiota. Collectively, we characterize how clinically relevant antibiotics affect antimicrobial defense in the context of human microbiota, and reveal a critical impairment of IM´s antimicrobial activity. Our study provides additional arguments for the rational use of antibiotics and offers mechanistic insights for the development of novel prophylactic strategies to protect high-risk patients from HAP.


Asunto(s)
Antibacterianos , Antiinfecciosos , Humanos , Ratones , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Monocitos , Antiinfecciosos/farmacología , Klebsiella pneumoniae , Pulmón
14.
J Biol Chem ; 287(17): 14004-11, 2012 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-22396550

RESUMEN

Carbon dioxide (CO(2)) is increasingly being appreciated as an intracellular signaling molecule that affects inflammatory and immune responses. Elevated arterial CO(2) (hypercapnia) is encountered in a range of clinical conditions, including chronic obstructive pulmonary disease, and as a consequence of therapeutic ventilation in acute respiratory distress syndrome. In patients suffering from this syndrome, therapeutic hypoventilation strategy designed to reduce mechanical damage to the lungs is accompanied by systemic hypercapnia and associated acidosis, which are associated with improved patient outcome. However, the molecular mechanisms underlying the beneficial effects of hypercapnia and the relative contribution of elevated CO(2) or associated acidosis to this response remain poorly understood. Recently, a role for the non-canonical NF-κB pathway has been postulated to be important in signaling the cellular transcriptional response to CO(2). In this study, we demonstrate that in cells exposed to elevated CO(2), the NF-κB family member RelB was cleaved to a lower molecular weight form and translocated to the nucleus in both mouse embryonic fibroblasts and human pulmonary epithelial cells (A549). Furthermore, elevated nuclear RelB was observed in vivo and correlated with hypercapnia-induced protection against LPS-induced lung injury. Hypercapnia-induced RelB processing was sensitive to proteasomal inhibition by MG-132 but was independent of the activity of glycogen synthase kinase 3ß or MALT-1, both of which have been previously shown to mediate RelB processing. Taken together, these data demonstrate that RelB is a CO(2)-sensitive NF-κB family member that may contribute to the beneficial effects of hypercapnia in inflammatory diseases of the lung.


Asunto(s)
Dióxido de Carbono/química , Hipercapnia/metabolismo , Factor de Transcripción ReIB/metabolismo , Animales , Línea Celular Tumoral , Núcleo Celular/metabolismo , Células Epiteliales/citología , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Humanos , Ratones , Modelos Biológicos , Interferencia de ARN , Transducción de Señal
15.
J Immunol ; 186(2): 1091-6, 2011 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-21149600

RESUMEN

Hypoxia is a feature of the microenvironment in a number of chronic inflammatory conditions due to increased metabolic activity and disrupted perfusion at the inflamed site. Hypoxia contributes to inflammation through the regulation of gene expression via key oxygen-sensitive transcriptional regulators including the hypoxia-inducible factor (HIF) and NF-κB. Recent studies have revealed a high degree of interdependence between HIF and NF-κB signaling; however, the relative contribution of each to hypoxia-induced inflammatory gene expression remains unclear. In this study, we use transgenic mice expressing luciferase under the control of NF-κB to demonstrate that hypoxia activates NF-κB in the heart and lungs of mice in vivo. Using small interfering RNA targeted to the p65 subunit of NF-κB, we confirm a unidirectional dependence of hypoxic HIF-1α accumulation upon an intact canonical NF-κB pathway in cultured cells. Cyclooxygenase-2 and other key proinflammatory genes are transcriptionally induced by hypoxia in a manner that is both HIF-1 and NF-κB dependent, and in mouse embryonic fibroblasts lacking an intact canonical NF-κB pathway, there is a loss of hypoxia-induced inflammatory gene expression. Finally, under conditions of hypoxia, HIF-1α and the p65 subunit of NF-κB directly bind to the cyclooxygenase-2 promoter. These results implicate an essential role for NF-κB signaling in inflammatory gene expression in response to hypoxia both through the regulation of HIF-1 and through direct effects upon target gene expression.


Asunto(s)
Regulación de la Expresión Génica/inmunología , Hipoxia/inmunología , Hipoxia/patología , Mediadores de Inflamación/fisiología , FN-kappa B/fisiología , Transducción de Señal/inmunología , Animales , Células CACO-2 , Células Cultivadas , Ciclooxigenasa 2/biosíntesis , Ciclooxigenasa 2/genética , Femenino , Células HeLa , Humanos , Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Subunidad alfa del Factor 1 Inducible por Hipoxia/biosíntesis , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Miocardio/metabolismo , Miocardio/patología , FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , Transducción de Señal/genética
16.
Cell Mol Life Sci ; 69(8): 1319-29, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22068612

RESUMEN

The oxygen-sensitive transcription factor hypoxia inducible factor (HIF) is a key regulator of gene expression during adaptation to hypoxia. Crucially, inflamed tissue often displays regions of prominent hypoxia. Recent studies have shown HIF signalling is intricately linked to that of the pro-inflammatory transcription factor nuclear factor kappa B (NFκB) during hypoxic inflammation. We describe the relative temporal contributions of each to hypoxia-induced inflammatory gene expression and investigate the level of crosstalk between the two pathways using a novel Gaussia princeps luciferase (Gluc) reporter system. Under the control of an active promoter, Gluc is expressed and secreted into the cell culture media, where it can be sampled and measured over time. Thus, Gluc constructs under the control of either HIF or NFκB were used to resolve their temporal transcriptional dynamics in response to hypoxia and to cytokine stimuli, respectively. We also investigated the interactions between HIF and NFκB activities using a construct containing the sequence from the promoter of the inflammatory gene cyclooxygenase 2 (COX-2), which includes functionally active binding sites for both HIF and NFκB. Finally, based on our experimental data, we constructed a mathematical model of the binding affinities of HIF and NFκB to their respective response elements to analyse transcriptional crosstalk. Taken together, these data reveal distinct temporal HIF and NFκB transcriptional activities in response to hypoxic inflammation. Furthermore, we demonstrate synergistic activity between these two transcription factors on the regulation of the COX-2 promoter, implicating a co-ordinated role for both HIF and NFκB in the expression of COX-2 in hypoxic inflammation.


Asunto(s)
Factor 1 Inducible por Hipoxia/inmunología , Hipoxia/inmunología , FN-kappa B/inmunología , Animales , Secuencia de Bases , Línea Celular , Línea Celular Tumoral , Copépodos/enzimología , Ciclooxigenasa 2/genética , Genes Reporteros , Humanos , Hipoxia/genética , Factor 1 Inducible por Hipoxia/genética , Inflamación/genética , Inflamación/inmunología , Luciferasas/genética , Modelos Biológicos , Datos de Secuencia Molecular , FN-kappa B/genética , Regiones Promotoras Genéticas , Transcripción Genética
17.
J Biol Chem ; 286(6): 4718-26, 2011 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-21123177

RESUMEN

Under conditions of hypoxia, most eukaryotic cells undergo a shift in metabolic strategy, which involves increased flux through the glycolytic pathway. Although this is critical for bioenergetic homeostasis, the underlying mechanisms have remained incompletely understood. Here, we report that the induction of hypoxia-induced glycolysis is retained in cells when gene transcription or protein synthesis are inhibited suggesting the involvement of additional post-translational mechanisms. Post-translational protein modification by the small ubiquitin related modifier-1 (SUMO-1) is induced in hypoxia and mass spectrometric analysis using yeast cells expressing tap-tagged Smt3 (the yeast homolog of mammalian SUMO) revealed hypoxia-dependent modification of a number of key glycolytic enzymes. Overexpression of SUMO-1 in mammalian cancer cells resulted in increased hypoxia-induced glycolysis and resistance to hypoxia-dependent ATP depletion. Supporting this, non-transformed cells also demonstrated increased glucose uptake upon SUMO-1 overexpression. Conversely, cells overexpressing the de-SUMOylating enzyme SENP-2 failed to demonstrate hypoxia-induced glycolysis. SUMO-1 overexpressing cells demonstrated focal clustering of glycolytic enzymes in response to hypoxia leading us to hypothesize a role for SUMOylation in promoting spatial re-organization of the glycolytic pathway. In summary, we hypothesize that SUMO modification of key metabolic enzymes plays an important role in shifting cellular metabolic strategies toward increased flux through the glycolytic pathway during periods of hypoxic stress.


Asunto(s)
Glucólisis/fisiología , Procesamiento Proteico-Postraduccional/fisiología , Proteína SUMO-1/metabolismo , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Hipoxia de la Célula/fisiología , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Células HeLa , Humanos , Proteína SUMO-1/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo
19.
J Immunol ; 185(7): 4439-45, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20817876

RESUMEN

Molecular O(2) and CO(2) are the primary substrate and product of aerobic metabolism, respectively. Levels of these physiologic gases in the cell microenvironment vary dramatically both in health and in diseases, such as chronic inflammation, ischemia, and cancer, in which metabolism is significantly altered. The identification of the hypoxia-inducible factor led to the discovery of an ancient and direct link between tissue O(2) and gene transcription. In this study, we demonstrate that mammalian cells (mouse embryonic fibroblasts and others) also sense changes in local CO(2) levels, leading to altered gene expression via the NF-κB pathway. IKKα, a central regulatory component of NF-κB, rapidly and reversibly translocates to the nucleus in response to elevated CO(2). This response is independent of hypoxia-inducible factor hydroxylases, extracellular and intracellular pH, and pathways that mediate acute CO(2)-sensing in nematodes and flies and leads to attenuation of bacterial LPS-induced gene expression. These results suggest the existence of a molecular CO(2) sensor in mammalian cells that is linked to the regulation of genes involved in innate immunity and inflammation.


Asunto(s)
Dióxido de Carbono/metabolismo , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/fisiología , Inflamación/metabolismo , FN-kappa B/inmunología , Animales , Western Blotting , Células Cultivadas , Expresión Génica , Humanos , Quinasa I-kappa B/metabolismo , Inflamación/inmunología , Ratones , Microscopía Confocal , Microscopía Fluorescente , Transporte de Proteínas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/inmunología
20.
Talanta ; 242: 123298, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35193012

RESUMEN

Recently, there has been growing interest in short-chain fatty acids (SCFA) and ketone bodies (KB) due to their potential use as biomarkers of health and disease. For instance, these diet-related metabolites can be used to monitor and reduce the risk of immune response, diabetes, or cardiovascular diseases. Given the interest in these metabolites, different targeted metabolomic methods based on UPLC-MS/MS have been developed in recent years to detect and quantify SCFA and KB. In this case study, we discovered that applying an existing validated, targeted UPLC-MS/MS method to mouse plasma, resulted in a fragment ion (194 m/z) being originally misidentified as acetic acid (a SCFA), when its original source was 3-hydroxybutyric acid (a KB). Therefore, we report a modified, optimized LC method that can separate both signals. In addition, the metabolite coverage was expanded in this method to detect up to eight SCFA: acetic, propanoic, butyric, isobutyric, 2-methylbutyric, valeric, isovaleric, and hexanoic acids, two KB: 3-hydroxybutyric, and acetoacetic acids, and one related metabolite: 3-hydroxy-3-methylbutyric acid. The optimization of this method increased the selectivity of the UPLC-MS/MS method towards the misidentified compound. These findings encourage the scientific community to increase efforts in validating the original precursor of small molecule fragments in targeted methods.


Asunto(s)
Ácidos Grasos Volátiles , Espectrometría de Masas en Tándem , Animales , Cromatografía Liquida/métodos , Ácidos Grasos Volátiles/metabolismo , Cuerpos Cetónicos , Ratones , Plasma , Espectrometría de Masas en Tándem/métodos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda