Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Appl Clin Med Phys ; 24(10): e14130, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37646429

RESUMEN

Concept inventories are multiple choice exams designed with the intention to test core concepts on specific subjects and evaluate common misconceptions. These tests serve as a useful tool in the classroom to assess value added by the instructor's educational methods and to better understand how students learn. They can provide educators with a method to evaluate their current teaching strategies and to make modifications that enhance student learning and ultimately elevate the quality of medical physics education. The use of concept inventories in introductory college physics courses revealed important gaps in conceptual understanding of physics by undergraduate students and motivated a shift of physics teaching towards more effective methods, such as active learning techniques. The goal of this review is to introduce medical physicists to concept inventories as educational evaluation tools and discuss potential applications to medical physics education by development through multi-institutional collaboration.

2.
J Appl Clin Med Phys ; 23(5): e13576, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35322526

RESUMEN

INTRODUCTION: Two end-to-end tests evaluate the accuracy of a surface-guided radiation therapy (SGRT) system (CRAD Catalyst HD) for position verification in comparison to a stereoscopic x-ray imaging system (Brainlab Exactrac ) for single-isocenter, multiple metastases stereotactic radiosurgery (SRS) using 3D polymer gel inserts. MATERIALS AND METHODS: A 3D-printed phantom (Prime phantom, RTsafe PC, Athens, Greece) with two separate cylindrical polymer gel inserts were immobilized in open-face masks and treated with a single isocentric, multitarget SRS plan. Planning was done in Brainlab (Elements) to treat five metastatic lesions in one fraction, and initial setup was done using cone beam computed tomography. Positional verification was done using orthogonal X-ray imaging (Brainlab Exactrac) and/or a surface imaging system (CRAD Catalyst HD, Uppsala, Sweden), and shift discrepancies were recorded for each couch angle. Forty-two hours after irradiation, the gel phantom was scanned in a 1.5 Tesla MRI, and images were fused with the patient computed tomography data/structure set for further analysis of spatial dose distribution. RESULTS: Discrepancies between the CRAD Catalyst HD system and Brainlab Exactrac were <1 mm in the translational direction and <0.5° in the angular direction at noncoplanar couch angles. Dose parameters (DMean% , D95% ) and 3D gamma index passing rates were evaluated for both setup modalities for each planned target volume (PTV) at a variety of thresholds: 3%/2 mm (Exactrac≥93.1% and CRAD ≥87.2%), 5%/2 mm (Exactrac≥95.6% and CRAD ≥94.6%), and 5%/1 mm (Exactrac≥81.8% and CRAD ≥83.7%). CONCLUSION: Dose metrics for a setup with surface imaging was found to be consistent with setup using x-ray imaging, demonstrating high accuracy and reproducibility for treatment delivery. Results indicate the feasibility of using surface imaging for position verification at noncoplanar couch angles for single-isocenter, multiple-target SRS using end-to-end quality assurance (QA) testing with 3D polymer gel dosimetry.


Asunto(s)
Radiocirugia , Humanos , Fantasmas de Imagen , Polímeros , Radiocirugia/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Reproducibilidad de los Resultados , Rayos X
3.
J Appl Clin Med Phys ; 22(4): 172-183, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33739569

RESUMEN

PURPOSE: Studies have evaluated the viability of using open-face masks as an immobilization technique to treat intracranial and head and neck cancers. This method offers less stress to the patient with comparable accuracy to closed-face masks. Open-face masks permit implementation of surface guided radiation therapy (SGRT) to assist in positioning and motion management. Research suggests that changes in patient facial expressions may influence the SGRT system to generate false positional corrections. This study aims to quantify these errors produced by the SGRT system due to face motion. METHODS: Ten human subjects were immobilized using open-face masks. Four discrete SGRT regions of interest (ROIs) were analyzed based on anatomical features to simulate different mask openings. The largest ROI was lateral to the cheeks, superior to the eyebrows, and inferior to the mouth. The smallest ROI included only the eyes and bridge of the nose. Subjects were asked to open and close their eyes and simulate fear and annoyance and peak isocenter shifts were recorded. This was performed in both standard and SRS specific resolutions with the C-RAD Catalyst HD system. RESULTS: All four ROIs analyzed in SRS and Standard resolutions demonstrated an average deviation of 0.3 ± 0.3 mm for eyes closed and 0.4 ± 0.4 mm shift for eyes open, and 0.3 ± 0.3 mm for eyes closed and 0.8 ± 0.9 mm shift for eyes open. The average deviation observed due to changing facial expressions was 1.4 ± 0.9 mm for SRS specific and 1.6 ± 1.6 mm for standard resolution. CONCLUSION: The SGRT system can generate false positional corrections for face motion and this is amplified at lower resolutions and smaller ROIs. These errors should be considered in the overall tolerances and treatment plan when using open-face masks with SGRT and may warrant additional radiographic imaging.


Asunto(s)
Neoplasias de Cabeza y Cuello , Radioterapia Guiada por Imagen , Humanos , Máscaras , Movimiento (Física) , Radiografía
4.
Int J Radiat Oncol Biol Phys ; 111(3): 705-715, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34217788

RESUMEN

PURPOSE: Our purpose was to investigate the effect of automated knowledge-based planning (KBP) on real-world clinical workflow efficiency, assess whether manual refinement of KBP plans improves plan quality across multiple disease sites, and develop a data-driven method to periodically improve KBP automated planning routines. METHODS AND MATERIALS: Using clinical knowledge-based automated planning routines for prostate, prostatic fossa, head and neck, and hypofractionated lung disease sites in a commercial KBP solution, workflow efficiency was compared in terms of planning time in a pre-KBP (n = 145 plans) and post-KBP (n = 503) patient cohort. Post-KBP, planning was initialized with KBP (KBP-only) and subsequently manually refined (KBP +human). Differences in planning time were tested for significance using a 2-tailed Mann-Whitney U test (P < .05, null hypothesis: planning time unchanged). Post-refinement plan quality was assessed using site-specific dosimetric parameters of the original KBP-only plan versus KBP +human; 2-tailed paired t test quantified statistical significance (Bonferroni-corrected P < .05, null hypothesis: no dosimetric difference after refinement). If KBP +human significantly improved plans across the cohort, optimization objectives were changed to create an updated KBP routine (KBP'). Patients were replanned with KBP' and plan quality was compared with KBP +human as described previously. RESULTS: KBP significantly reduced planning time in all disease sites: prostate (median: 7.6 hrs â†’ 2.1 hrs; P < .001), prostatic fossa (11.1 hrs â†’ 3.7 hrs; P = .001), lung (9.9 hrs â†’ 2.0 hrs; P < .001), and head and neck (12.9 hrs â†’ 3.5 hrs; P <.001). In prostate, prostatic fossa, and lung disease sites, organ-at-risk dose changes in KBP +human versus KBP-only were minimal (<1% prescription dose). In head and neck, KBP +human did achieve clinically relevant dose reductions in some parameters. The head and neck routine was updated (KBP'HN) to incorporate dose improvements from manual refinement. The only significant dosimetric differences to KBP +human after replanning with KBP'HN were in favor of the new routine. CONCLUSIONS: KBP increased clinical efficiency by significantly reducing planning time. On average, human refinement offered minimal dose improvements over KBP-only plans. In the single disease site where KBP +human was superior to KBP-only, differences were eliminated by adjusting optimization parameters in a revised KBP routine.


Asunto(s)
Enfermedades Pulmonares , Radioterapia de Intensidad Modulada , Automatización , Humanos , Bases del Conocimiento , Masculino , Órganos en Riesgo , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Recursos Humanos
5.
Pract Radiat Oncol ; 9(4): 257-265, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30826481

RESUMEN

PURPOSE: Knowledge-based planning (KBP) clinical implementation necessitates significant upfront effort, even within a single disease site. The purpose of this study was to demonstrate an efficient method for clinicians to assess the noninferiority of KBP across multiple disease sites and estimate any systematic dosimetric differences after implementation. We sought to establish these endpoints in a plurality of previously treated patients (validation set) with both closed-loop (training set overlapping validation set) and open-loop (independent training set) KBP routines. METHODS AND MATERIALS: We identified 53 prostate, 24 prostatic fossa, 54 hypofractionated lung, and 52 head and neck patients treated with volumetric modulated arc therapy in the year directly preceding our clinic's broad adoption of RapidPlan (Varian Medical Systems, Palo Alto, CA). Using the Varian Eclipse Scripting API, our program takes as input a list of patients, then performs semiautomated structure matching, fully automated RapidPlan-driven optimization, and plan comparison. All plans were normalized to the planning target volume (PTV) D95% = 100%. Dose metric differences (ΔDx = Dx,clinical - Dx,KBP) were computed for standard PTV and organ-at-risk (OAR) dose-volume histogram parameters across disease sites. A 2-tailed paired t test quantified statistical significance (P < .001). RESULTS: Statistically significant organ dose-volume histogram improvements were observed in the KBP cohort: the rectum, bladder, and penile bulb in prostate/prostatic fossa; and the larynx, esophagus, cricopharyngeus, parotid glands, and cochlea in head and neck. No OAR dose metric was statistically worse in any KBP sample. PTV ΔD1% increases in prostatic fossa were deemed acceptable given organ-sparing gains. PTV ΔD1% and internal target volume ΔD99% increase for the lung was by design owing to the prescription normalization variance in the pre-KBP lung sample. CONCLUSIONS: Our automated method showed multiple disease sites' KBP routines to be noninferior to manual planning, with statistically significant superiority in some aspects of OAR sparing. This method is applicable to any institution implementing either closed-loop or open-loop KBP autoplanning routines.


Asunto(s)
Enfermedad/genética , Bases del Conocimiento , Radioterapia de Intensidad Modulada/métodos , Humanos , Masculino , Estudios Retrospectivos , Estudios de Validación como Asunto
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda