Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
BMC Plant Biol ; 14: 11, 2014 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-24401128

RESUMEN

BACKGROUND: Solanum lycopersicum or tomato is extensively studied with respect to the ethylene metabolism during climacteric ripening, focusing almost exclusively on fruit pericarp. In this work the ethylene biosynthesis pathway was examined in all major tomato fruit tissues: pericarp, septa, columella, placenta, locular gel and seeds. The tissue specific ethylene production rate was measured throughout fruit development, climacteric ripening and postharvest storage. All ethylene intermediate metabolites (1-aminocyclopropane-1-carboxylic acid (ACC), malonyl-ACC (MACC) and S-adenosyl-L-methionine (SAM)) and enzyme activities (ACC-oxidase (ACO) and ACC-synthase (ACS)) were assessed. RESULTS: All tissues showed a similar climacteric pattern in ethylene productions, but with a different amplitude. Profound differences were found between tissue types at the metabolic and enzymatic level. The pericarp tissue produced the highest amount of ethylene, but showed only a low ACC content and limited ACS activity, while the locular gel accumulated a lot of ACC, MACC and SAM and showed only limited ACO and ACS activity. Central tissues (septa, columella and placenta) showed a strong accumulation of ACC and MACC. These differences indicate that the ethylene biosynthesis pathway is organized and regulated in a tissue specific way. The possible role of inter- and intra-tissue transport is discussed to explain these discrepancies. Furthermore, the antagonistic relation between ACO and E8, an ethylene biosynthesis inhibiting protein, was shown to be tissue specific and developmentally regulated. In addition, ethylene inhibition by E8 is not achieved by a direct interaction between ACO and E8, as previously suggested in literature. CONCLUSIONS: The Ethylene biosynthesis pathway and E8 show a tissue specific and developmental differentiation throughout tomato fruit development and ripening.


Asunto(s)
Etilenos/metabolismo , Solanum lycopersicum/metabolismo , Aminoácido Oxidorreductasas/metabolismo , Aminoácidos Cíclicos/metabolismo , Regulación de la Expresión Génica de las Plantas , Liasas/metabolismo , Solanum lycopersicum/fisiología
2.
New Phytol ; 202(3): 952-963, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24443955

RESUMEN

The gaseous plant hormone ethylene is involved in many physiological processes including climacteric fruit ripening, in which it is a key determinant of fruit quality. A detailed model that describes ethylene biochemistry dynamics is missing. Often, kinetic modeling is used to describe metabolic networks or signaling cascades, mostly ignoring the link with transcriptomic data. We have constructed an elegant kinetic model that describes the transfer of genetic information into abundance and metabolic activity of proteins for the entire ethylene biosynthesis pathway during fruit development and ripening of tomato (Solanum lycopersicum). Our model was calibrated against a vast amount of transcriptomic, proteomic and metabolic data and showed good descriptive qualities. Subsequently it was validated successfully against several ripening mutants previously described in the literature. The model was used as a predictive tool to evaluate novel and existing hypotheses regarding the regulation of ethylene biosynthesis. This bottom-up kinetic network model was used to indicate that a side-branch of the ethylene pathway, the formation of the dead-end product 1-(malonylamino)-1-aminocyclopropane-1-carboxylic acid (MACC), might have a strong effect on eventual ethylene production. Furthermore, our in silico analyses indicated potential (post-) translational regulation of the ethylene-forming enzyme ACC oxidase.


Asunto(s)
Etilenos/biosíntesis , Frutas/crecimiento & desarrollo , Frutas/genética , Perfilación de la Expresión Génica/métodos , Modelos Biológicos , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/genética , Aminoácido Oxidorreductasas/metabolismo , Vías Biosintéticas/genética , Calibración , Frutas/enzimología , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Cinética , Solanum lycopersicum/enzimología , Mutación/genética , Reproducibilidad de los Resultados
3.
Physiol Plant ; 150(2): 161-73, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23957643

RESUMEN

In this study, the short-term and dynamic changes of the ethylene biosynthesis of Jonagold apple during and after application of controlled atmosphere (CA) storage conditions were quantified using a systems biology approach. Rapid responses to imposed temperature and atmospheric conditions were captured by continuous online photoacoustic ethylene measurements. Discrete destructive sampling was done to understand observed changes of ethylene biosynthesis at the transcriptional, translational and metabolic level. Application of the ethylene inhibitor 1-methylcyclopropene (1-MCP) allowed for the discrimination between ethylene-mediated changes and ethylene-independent changes related to the imposed conditions. Online ethylene measurements showed fast and slower responses during and after application of CA conditions. The changes in 1-aminocyclopropane-1-carboxylate synthase (ACS) activity were most correlated with changes in ACS1 expression and regulated the cold-induced increase in ethylene production during the early chilling phase. Transcription of ACS3 was found ethylene independent and was triggered upon warming of CA-stored apples. Increased expression of ACO1 during shelf life led to a strong increase in 1-aminocyclopropane-1-carboxylate oxidase (ACO) activity, required for the exponential production of ethylene during system 2. Expression of ACO2 and ACO3 was upregulated in 1-MCP-treated fruit showing a negative correlation with ethylene production. ACO activity never became rate limiting.


Asunto(s)
Etilenos/biosíntesis , Malus/metabolismo , Ciclopropanos/farmacología , Ambiente Controlado , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Liasas/metabolismo , Malus/efectos de los fármacos , Malus/enzimología , Malus/genética , Temperatura
4.
Plant Physiol ; 160(3): 1498-514, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22977280

RESUMEN

The concept of system 1 and system 2 ethylene biosynthesis during climacteric fruit ripening was initially described four decades ago. Although much is known about fruit development and climacteric ripening, little information is available about how ethylene biosynthesis is regulated during the postclimacteric phase. A targeted systems biology approach revealed a novel regulatory mechanism of ethylene biosynthesis of tomato (Solanum lycopersicum) when fruit have reached their maximal ethylene production level and which is characterized by a decline in ethylene biosynthesis. Ethylene production is shut down at the level of 1-aminocyclopropane-1-carboxylic acid oxidase. At the same time, 1-aminocyclopropane-1-carboxylic acid synthase activity increases. Analysis of the Yang cycle showed that the Yang cycle genes are regulated in a coordinated way and are highly expressed during postclimacteric ripening. Postclimacteric red tomatoes on the plant showed only a moderate regulation of 1-aminocyclopropane-1-carboxylic acid synthase and Yang cycle genes compared with the regulation in detached fruit. Treatment of red fruit with 1-methylcyclopropane and ethephon revealed that the shut-down mechanism in ethylene biosynthesis is developmentally programmed and only moderately ethylene sensitive. We propose that the termination of autocatalytic ethylene biosynthesis of system 2 in ripe fruit delays senescence and preserves the fruit until seed dispersal.


Asunto(s)
Etilenos/biosíntesis , Frutas/crecimiento & desarrollo , Redes y Vías Metabólicas , Metabolómica/métodos , Solanum lycopersicum/crecimiento & desarrollo , Biología de Sistemas/métodos , Aminoácido Oxidorreductasas/metabolismo , Aminoácidos Cíclicos/metabolismo , Biocatálisis , Western Blotting , Respiración de la Célula , Frutas/citología , Frutas/enzimología , Frutas/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Liasas/metabolismo , Solanum lycopersicum/citología , Solanum lycopersicum/enzimología , Solanum lycopersicum/genética , Solanum lycopersicum/fisiología , Modelos Biológicos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análisis de Componente Principal , Reproducibilidad de los Resultados
5.
Physiol Plant ; 148(2): 176-88, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23020643

RESUMEN

S-adenosyl-L-methionine (SAM) is the major methyl donor in cells and it is also used for the biosynthesis of polyamines and the plant hormone ethylene. During climacteric ripening of tomato (Solanum lycopersicum 'Bonaparte'), ethylene production rises considerably which makes it an ideal object to study SAM involvement. We examined in ripening fruit how a 1-MCP treatment affects SAM usage by the three major SAM-associated pathways. The 1-MCP treatment inhibited autocatalytic ethylene production but did not affect SAM levels. We also observed that 1-(malonylamino)cyclopropane-1-carboxylic acid formation during ripening is ethylene dependent. SAM decarboxylase expression was also found to be upregulated by ethylene. Nonetheless polyamine content was higher in 1-MCP-treated fruit. This leads to the conclusion that the ethylene and polyamine pathway can operate simultaneously. We also observed a higher methylation capacity in 1-MCP-treated fruit. During fruit ripening substantial methylation reactions occur which are gradually inhibited by the methylation product S-adenosyl-L-homocysteine (SAH). SAH accumulation is caused by a drop in adenosine kinase expression, which is not observed in 1-MCP-treated fruit. We can conclude that tomato fruit possesses the capability to simultaneously consume SAM during ripening to ensure a high rate of ethylene and polyamine production and transmethylation reactions. SAM usage during ripening requires a complex cellular regulation mechanism in order to control SAM levels.


Asunto(s)
Ciclopropanos/farmacología , Etilenos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Poliaminas/metabolismo , S-Adenosilmetionina/metabolismo , Solanum lycopersicum/fisiología , Adenosina Quinasa/genética , Adenosina Quinasa/metabolismo , Adenosilmetionina Descarboxilasa/genética , Adenosilmetionina Descarboxilasa/metabolismo , Ciclopropanos/metabolismo , Frutas/efectos de los fármacos , Frutas/enzimología , Frutas/genética , Frutas/fisiología , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/enzimología , Solanum lycopersicum/genética , Redes y Vías Metabólicas , Metilación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poliaminas/análisis , S-Adenosilhomocisteína/metabolismo , S-Adenosilmetionina/análisis , Regulación hacia Arriba
6.
Phytochem Anal ; 21(6): 602-8, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20690158

RESUMEN

INTRODUCTION: S-adenosyl-l-methionine (SAM) plays an important role in many biochemical reactions in plants. It is mainly used as a methyl donor for methylation reactions, but it also participates in, for example, the biosynthesis of polyamines and the plant hormone ethylene. OBJECTIVE: To develop a fast capillary electrophoresis technique to separate SAM in fruits and fruit juices without any pre-purification steps. METHODOLOGY: Four different extraction solutions and two extraction times were tested, of which 5% trichloroacetic acid (TCA) for 10 min was found most suited. A glycine : phosphate buffer (200 : 50 mm, pH 2.5) was found optimal to analyse SAM in TCA extracts. Analyses were preformed on different climacteric and non-climacteric fruits and fruit juices. The calibration curve was created in degraded tomato extract. The CE-method was compared with a more conventional HPLC method described in literature. RESULTS: The CE technique made it possible to completely separate the S,S- and R,S-diastereoisomeric forms of SAM. The CE method proved to be very fast (20 min total running time instead of 42 min) and more sensitive (limit of detection of 0.5 µm instead of 1 µm) compared with the conventional HPLC method. CONCLUSION: Fast measurements of SAM in fruits and juices are favoured by capillary electrophoresis in a 200 : 50 mm glycine : phosphate (pH 2.5) buffer system.


Asunto(s)
Frutas/química , S-Adenosilmetionina/análisis , Tampones (Química) , Calibración , Cromatografía Líquida de Alta Presión , Electroforesis Capilar , Indicadores y Reactivos , Solanum lycopersicum/química , Extractos Vegetales/análisis , S-Adenosilmetionina/aislamiento & purificación , Soluciones , Estereoisomerismo
7.
Plant Methods ; 7: 17, 2011 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-21696643

RESUMEN

BACKGROUND: The foundations for ethylene research were laid many years ago by researchers such as Lizada, Yang and Hoffman. Nowadays, most of the methods developed by them are still being used. Technological developments since then have led to small but significant improvements, contributing to a more efficient workflow. Despite this, many of these improvements have never been properly documented. RESULTS: This article provides an updated, integrated set of protocols suitable for the assembly of a complete picture of ethylene biosynthesis, including the measurement of ethylene itself. The original protocols for the metabolites 1-aminocyclopropane-1-carboxylic acid and 1-(malonylamino)cyclopropane-1-carboxylic acid have been updated and downscaled, while protocols to determine in vitro activities of the key enzymes 1-aminocyclopropane-1-carboxylate synthase and 1-aminocyclopropane-1-carboxylate oxidase have been optimised for efficiency, repeatability and accuracy. All the protocols described were optimised for apple fruit, but have been proven to be suitable for the analysis of tomato fruit as well. CONCLUSIONS: This work collates an integrated set of detailed protocols for the measurement of components of the ethylene biosynthetic pathway, starting from well-established methods. These protocols have been optimised for smaller sample volumes, increased efficiency, repeatability and accuracy. The detailed protocol allows other scientists to rapidly implement these methods in their own laboratories in a consistent and efficient way.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda