Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Life Sci Alliance ; 6(4)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36720499

RESUMEN

The metalloprotease ADAM17 is a sheddase of key molecules, including TNF and epidermal growth factor receptor ligands. ADAM17 exists within an assemblage, the "sheddase complex," containing a rhomboid pseudoprotease (iRhom1 or iRhom2). iRhoms control multiple aspects of ADAM17 biology. The FERM domain-containing protein iTAP/Frmd8 is an iRhom-binding protein that prevents the precocious shunting of ADAM17 and iRhom2 to lysosomes and their consequent degradation. As pathophysiological role(s) of iTAP/Frmd8 have not been addressed, we characterized the impact of iTAP/Frmd8 loss on ADAM17-associated phenotypes in mice. We show that iTAP/Frmd8 KO mice exhibit defects in inflammatory and intestinal epithelial barrier repair functions, but not the collateral defects associated with global ADAM17 loss. Furthermore, we show that iTAP/Frmd8 regulates cancer cell growth in a cell-autonomous manner and by modulating the tumor microenvironment. Our work suggests that pharmacological intervention at the level of iTAP/Frmd8 may be beneficial to target ADAM17 activity in specific compartments during chronic inflammatory diseases or cancer, while avoiding the collateral impact on the vital functions associated with the widespread inhibition of ADAM17.


Asunto(s)
Neoplasias , Animales , Ratones , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Inflamación , Neoplasias/genética , Microambiente Tumoral
2.
Mol Metab ; 73: 101731, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37121509

RESUMEN

OBJECTIVE: The metalloprotease ADAM17 (also called TACE) plays fundamental roles in homeostasis by shedding key signaling molecules from the cell surface. Although its importance for the immune system and epithelial tissues is well-documented, little is known about the role of ADAM17 in metabolic homeostasis. The purpose of this study was to determine the impact of ADAM17 expression, specifically in adipose tissues, on metabolic homeostasis. METHODS: We used histopathology, molecular, proteomic, transcriptomic, in vivo integrative physiological and ex vivo biochemical approaches to determine the impact of adipose tissue-specific deletion of ADAM17 upon adipocyte and whole organism metabolic physiology. RESULTS: ADAM17adipoq-creΔ/Δ mice exhibited a hypermetabolic phenotype characterized by elevated energy consumption and increased levels of adipocyte thermogenic gene expression. On a high fat diet, these mice were more thermogenic, while exhibiting elevated expression levels of genes associated with lipid oxidation and lipolysis. This hypermetabolic phenotype protected mutant mice from obesogenic challenge, limiting weight gain, hepatosteatosis and insulin resistance. Activation of beta-adrenoceptors by the neurotransmitter norepinephrine, a key regulator of adipocyte physiology, triggered the shedding of ADAM17 substrates, and regulated ADAM17 expression at the mRNA and protein levels, hence identifying a functional connection between thermogenic licensing and the regulation of ADAM17. Proteomic studies identified Semaphorin 4B (SEMA4B), as a novel ADAM17-shed adipokine, whose expression is regulated by physiological thermogenic cues, that acts to inhibit adipocyte differentiation and dampen thermogenic responses in adipocytes. Transcriptomic data showed that cleaved SEMA4B acts in an autocrine manner in brown adipocytes to repress the expression of genes involved in adipogenesis, thermogenesis, and lipid uptake, storage and catabolism. CONCLUSIONS: Our findings identify a novel ADAM17-dependent axis, regulated by beta-adrenoceptors and mediated by the ADAM17-cleaved form of SEMA4B, that modulates energy balance in adipocytes by inhibiting adipocyte differentiation, thermogenesis and lipid catabolism.


Asunto(s)
Adipoquinas , Semaforinas , Animales , Ratones , Adipocitos Marrones/metabolismo , Adipoquinas/metabolismo , Diferenciación Celular , Lípidos , Proteómica , Receptores Adrenérgicos beta/metabolismo , Semaforinas/genética , Semaforinas/metabolismo , Termogénesis/fisiología
3.
FEBS J ; 289(22): 6822-6831, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36377590

RESUMEN

The major criterion that distinguishes eukaryotes from prokaryotes is the presence of organelles in the former. Organelles provide a compartment in which biochemical processes are corralled within bespoke biophysical conditions and act as storage depots, powerhouses, waste storage/recycling units and innate immune signalling hubs. A key challenge faced by organelles is to define, and then retain, their identity; this is mediated by complex proteostasis mechanisms including the import of an organelle-specific proteome, the exclusion of non-organellar proteins and the removal of misfolded proteins via dedicated quality control mechanisms. This Special Issue on Organelle Homeostasis provides an engaging, eclectic, yet integrative, perspective on organelle homeostasis in a range of organelles including those from the secretory and endocytic pathways, mitochondria, the autophagy-lysosomal pathway and the nucleus and its sub-compartments. Some lesser-known organelles including migrasomes (organelles that are released by migrating cells) and GOMED (a Golgi-specific form of autophagy) are also introduced. In the spirit of the principles of organelle biology, we hope you find the reviews in this Issue both encapsulating and captivating, and we thank the authors for their excellent contributions.


Asunto(s)
Retículo Endoplásmico , Orgánulos , Retículo Endoplásmico/metabolismo , Orgánulos/metabolismo , Aparato de Golgi/metabolismo , Lisosomas/metabolismo , Mitocondrias , Homeostasis
4.
Science ; 375(6577): eabi4343, 2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35025629

RESUMEN

The outer mitochondrial membrane (OMM) is essential for cellular homeostasis. Yet little is known of the mechanisms that remodel it during natural stresses. We found that large "SPOTs" (structures positive for OMM) emerge during Toxoplasma gondii infection in mammalian cells. SPOTs mediated the depletion of the OMM proteins mitofusin 1 and 2, which restrict parasite growth. The formation of SPOTs depended on the parasite effector TgMAF1 and the host mitochondrial import receptor TOM70, which is required for optimal parasite proliferation. TOM70 enabled TgMAF1 to interact with the host OMM translocase SAM50. The ablation of SAM50 or the overexpression of an OMM-targeted protein promoted OMM remodeling independently of infection. Thus, Toxoplasma hijacks the formation of SPOTs, a cellular response to OMM stress, to promote its growth.


Asunto(s)
Membranas Mitocondriales/fisiología , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales/metabolismo , Proteínas Protozoarias/metabolismo , Toxoplasma/fisiología , Animales , Línea Celular , GTP Fosfohidrolasas/metabolismo , Humanos , Membranas Intracelulares/fisiología , Membranas Intracelulares/ultraestructura , Ratones , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/ultraestructura , Proteínas Mitocondriales/metabolismo , Unión Proteica , Estrés Fisiológico , Toxoplasma/crecimiento & desarrollo , Toxoplasma/ultraestructura , Toxoplasmosis/parasitología , Vacuolas/fisiología , Vacuolas/ultraestructura
5.
Mol Metab ; 31: 67-84, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31918923

RESUMEN

OBJECTIVE: Obesity is the result of positive energy balance. It can be caused by excessive energy consumption but also by decreased energy dissipation, which occurs under several conditions including when the development or activation of brown adipose tissue (BAT) is impaired. Here we evaluated whether iRhom2, the essential cofactor for the Tumour Necrosis Factor (TNF) sheddase ADAM17/TACE, plays a role in the pathophysiology of metabolic syndrome. METHODS: We challenged WT versus iRhom2 KO mice to positive energy balance by chronic exposure to a high fat diet and then compared their metabolic phenotypes. We also carried out ex vivo assays with primary and immortalized mouse brown adipocytes to establish the autonomy of the effect of loss of iRhom2 on thermogenesis and respiration. RESULTS: Deletion of iRhom2 protected mice from weight gain, dyslipidemia, adipose tissue inflammation, and hepatic steatosis and improved insulin sensitivity when challenged by a high fat diet. Crucially, the loss of iRhom2 promotes thermogenesis via BAT activation and beige adipocyte recruitment, enabling iRhom2 KO mice to dissipate excess energy more efficiently than WT animals. This effect on enhanced thermogenesis is cell-autonomous in brown adipocytes as iRhom2 KOs exhibit elevated UCP1 levels and increased mitochondrial proton leak. CONCLUSION: Our data suggest that iRhom2 is a negative regulator of thermogenesis and plays a role in the control of adipose tissue homeostasis during metabolic disease.


Asunto(s)
Proteínas Portadoras/metabolismo , Obesidad/metabolismo , Termogénesis , Animales , Dieta Alta en Grasa/efectos adversos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/inducido químicamente
6.
Elife ; 72018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29897333

RESUMEN

The apical inflammatory cytokine TNF regulates numerous important biological processes including inflammation and cell death, and drives inflammatory diseases. TNF secretion requires TACE (also called ADAM17), which cleaves TNF from its transmembrane tether. The trafficking of TACE to the cell surface, and stimulation of its proteolytic activity, depends on membrane proteins, called iRhoms. To delineate how the TNF/TACE/iRhom axis is regulated, we performed an immunoprecipitation/mass spectrometry screen to identify iRhom-binding proteins. This identified a novel protein, that we name iTAP (iRhom Tail-Associated Protein) that binds to iRhoms, enhancing the cell surface stability of iRhoms and TACE, preventing their degradation in lysosomes. Depleting iTAP in primary human macrophages profoundly impaired TNF production and tissues from iTAP KO mice exhibit a pronounced depletion in active TACE levels. Our work identifies iTAP as a physiological regulator of TNF signalling and a novel target for the control of inflammation.


Asunto(s)
Proteína ADAM17/metabolismo , Proteínas Portadoras/metabolismo , Proteínas del Citoesqueleto/metabolismo , Macrófagos/metabolismo , Proteínas de la Membrana/metabolismo , Factor de Necrosis Tumoral alfa/genética , Proteína ADAM17/genética , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/genética , Línea Celular , Proteínas del Citoesqueleto/genética , Endosomas/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular , Macrófagos/citología , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Cultivo Primario de Células , Unión Proteica , Proteolisis , Células RAW 264.7 , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo
7.
Sci Rep ; 7(1): 7283, 2017 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-28779096

RESUMEN

Rhomboids are intramembrane serine proteases conserved in all kingdoms of life. They regulate epidermal growth factor receptor signalling in Drosophila by releasing signalling ligands from their transmembrane tethers. Their functions in mammals are poorly understood, in part because of the lack of endogenous substrates identified thus far. We used a quantitative proteomics approach to investigate the substrate repertoire of rhomboid protease RHBDL2 in human cells. We reveal a range of novel substrates that are specifically cleaved by RHBDL2, including the interleukin-6 receptor (IL6R), cell surface protease inhibitor Spint-1, the collagen receptor tyrosine kinase DDR1, N-Cadherin, CLCP1/DCBLD2, KIRREL, BCAM and others. We further demonstrate that these substrates can be shed by endogenously expressed RHBDL2 and that a subset of them is resistant to shedding by cell surface metalloproteases. The expression profiles and identity of the substrates implicate RHBDL2 in physiological or pathological processes affecting epithelial homeostasis.


Asunto(s)
Epitelio/metabolismo , Homeostasis , Proteoma , Proteómica , Serina Proteasas/metabolismo , Proteína ADAM10/metabolismo , Proteína ADAM17/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Células Epiteliales/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteolisis , Proteómica/métodos , Serina Endopeptidasas , Serina Proteasas/genética , Especificidad por Sustrato
8.
Cell Rep ; 21(3): 745-757, 2017 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-29045841

RESUMEN

Cell surface metalloproteases coordinate signaling during development, tissue homeostasis, and disease. TACE (TNF-α-converting enzyme), is responsible for cleavage ("shedding") of membrane-tethered signaling molecules, including the cytokine TNF, and activating ligands of the EGFR. The trafficking of TACE within the secretory pathway requires its binding to iRhom2, which mediates the exit of TACE from the endoplasmic reticulum. An important, but mechanistically unclear, feature of TACE biology is its ability to be stimulated rapidly on the cell surface by numerous inflammatory and growth-promoting agents. Here, we report a role for iRhom2 in TACE stimulation on the cell surface. TACE shedding stimuli trigger MAP kinase-dependent phosphorylation of iRhom2 N-terminal cytoplasmic tail. This recruits 14-3-3 proteins, enforcing the dissociation of TACE from complexes with iRhom2, promoting the cleavage of TACE substrates. Our data reveal that iRhom2 controls multiple aspects of TACE biology, including stimulated shedding on the cell surface.


Asunto(s)
Proteína ADAM17/metabolismo , Proteínas Portadoras/metabolismo , Proteolisis , Proteínas 14-3-3/metabolismo , Animales , Proteínas Portadoras/química , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Ratones Noqueados , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , Fosfoserina/metabolismo , Transducción de Señal , Especificidad por Sustrato , Receptores Toll-Like/metabolismo
9.
Plant Physiol Biochem ; 43(12): 1067-73, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16386428

RESUMEN

The physiological role of class III peroxidases (EC 1.11.1.7) in controlling plant growth and development has been investigated by over-expression of both native and heterologous peroxidases. However, it has remained an enigma as to why the phenotypes of different peroxidase over-expressing transgenics vary. In order to resolve the conflicting information about the consequences of peroxidase over-expression, we have explored the role of the subcellular targeting of HRP-C in controlling stem growth, root development, axillary branching and abiotic stress tolerance in tobacco (Nicotiana tabacum L.). Altering the sub-cellular targeting of vacuolar HRP-C, such that over-expressed peroxidase accumulates in the cytoplasm and cell wall, induced phenotypic changes that are typically associated with altered auxin homeostasis, and over-expression of cell wall located peroxidases. We conclude that sub-cellular targeting is a determinant of the phenotype of peroxidase over-expressing plants.


Asunto(s)
Genes Sintéticos , Peroxidasa de Rábano Silvestre/biosíntesis , Nicotiana/enzimología , Hojas de la Planta/enzimología , Plantas Modificadas Genéticamente/enzimología , Pared Celular/fisiología , Citoplasma/fisiología , Genes de Plantas , Peroxidasa de Rábano Silvestre/genética , Ácidos Indolacéticos/metabolismo , Lignina/biosíntesis , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Nicotiana/genética , Nicotiana/crecimiento & desarrollo , Rayos Ultravioleta
11.
Ann Bot ; 93(3): 303-10, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14749254

RESUMEN

BACKGROUND AND AIMS: Native horseradish (Armoracia rusticana) peroxidase, HRP (EC 1.11.1.7), isoenzyme C is synthesized with N-terminal and C-terminal peptide extensions, believed to be associated with protein targeting. This study aimed to explore the specific functions of these extensions, and to generate transgenic plants with expression patterns suitable for exploring the role of peroxidase in plant development and defence. METHODS: Transgenic Nicotiana tabacum (tobacco) plants expressing different versions of a synthetic horseradish peroxidase, HRP, isoenzyme C gene were constructed. The gene was engineered to include additional sequences coding for either the natural N-terminal or the C-terminal extension or both. These constructs were placed under the control of a constitutive promoter (CaMV-35S) or the tobacco RUBISCO-SSU light inducible promoter (SSU) and introduced into tobacco using Agrobacterium-mediated transformation. To study the effects of the N- and C-terminal extensions, the localization of recombinant peroxidase was determined using biochemical and molecular techniques. KEY RESULTS: Transgenic tobacco plants can exhibit a ten-fold increase in peroxidase activity compared with wild-type tobacco levels, and the majority of this activity is located in the symplast. The N-terminal extension is essential for the production of high levels of recombinant protein, while the C-terminal extension has little effect. Differences in levels of enzyme activity and recombinant protein are reflected in transcript levels. CONCLUSIONS: There is no evidence to support either preferential secretion or vacuolar targeting of recombinant peroxidase in this heterologous expression system. This leads us to question the postulated targeting roles of these peptide extensions. The N-terminal extension is essential for high level expression and appears to influence transcript stability or translational efficiency. Plants have been generated with greatly elevated cytosolic peroxidase activity, and smaller increases in apoplastic activity. These will be valuable for exploring the role of these enzymes in stress amelioration and plant development.


Asunto(s)
Armoracia/enzimología , Nicotiana/genética , Peroxidasa/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Secuencia de Aminoácidos , Armoracia/genética , Northern Blotting , Western Blotting , Fraccionamiento Celular/métodos , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Isoenzimas/genética , Isoenzimas/metabolismo , Datos de Secuencia Molecular , Peroxidasa/metabolismo , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/enzimología , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fracciones Subcelulares , Nicotiana/enzimología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda