Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Nature ; 621(7977): 43-44, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37673986
2.
J Exp Bot ; 72(5): 1906-1918, 2021 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-33206167

RESUMEN

Plants are known to exhibit a thigmomorphogenetic response to mechanical stimuli by altering their morphology and mechanical properties. Wind is widely perceived as mechanical stress and in many experiments its influence is simulated by applying mechanical perturbations. However, it is known that wind-induced effects on plants can differ and at times occur even in the opposite direction compared with those induced by mechanical perturbations. In the present study, the long-term response of Arabidopsis thaliana to a constant unidirectional wind was investigated. We found that exposure to wind resulted in a positive anemotropic response and in significant alterations to Arabidopsis morphology, mechanical properties, and anatomical tissue organization that were associated with the plant's strategy of acclimation to a windy environment. Overall, the observed response of Arabidopsis to wind differs significantly from previously reported responses of Arabidopsis to mechanical perturbations. The presented results suggest that the response of Arabidopsis is sensitive to the type of mechanical stimulus applied, and that it is not always straightforward to simulate one type of perturbation by another.


Asunto(s)
Arabidopsis , Estrés Mecánico , Viento
3.
Quant Plant Biol ; 3: e7, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37077979

RESUMEN

Plants acclimate to various types of mechanical stresses through thigmomorphogenesis and alterations in their mechanical properties. Although resemblance between wind- and touch-induced responses provides the foundation for studies where wind influence was mimicked by mechanical perturbations, factorial experiments revealed that it is not always straightforward to extrapolate results induced by one type of perturbation to the other. To investigate whether wind-induced changes in morphological and biomechanical traits can be reproduced, we subjected Arabidopsis thaliana to two vectorial brushing treatments. Both treatments significantly affected the length, mechanical properties and anatomical tissue composition of the primary inflorescence stem. While some of the morphological changes were found to be in line with those induced by wind, changes in the mechanical properties exhibited opposite trends irrespective of the brushing direction. Overall, a careful design of the brushing treatment gives the possibility to obtain a closer match to wind-induced changes, including a positive tropic response.

4.
Elife ; 112022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36445222

RESUMEN

Animal migration is highly sensitised to environmental cues, but plant dispersal is considered largely passive. The common dandelion, Taraxacum officinale, bears an intricate haired pappus facilitating flight. The pappus enables the formation of a separated vortex ring during flight; however, the pappus structure is not static but reversibly changes shape by closing in response to moisture. We hypothesised that this leads to changed dispersal properties in response to environmental conditions. Using wind tunnel experiments for flow visualisation, particle image velocimetry, and flight tests, we characterised the fluid mechanics effects of the pappus morphing. We also modelled dispersal to understand the impact of pappus morphing on diaspore distribution. Pappus morphing dramatically alters the fluid mechanics of diaspore flight. We found that when the pappus closes in moist conditions, the drag coefficient decreases and thus the falling velocity is greatly increased. Detachment of diaspores from the parent plant also substantially decreases. The change in detachment when the pappus closes increases dispersal distances by reducing diaspore release when wind speeds are low. We propose that moisture-dependent pappus-morphing is a form of informed dispersal allowing rapid responses to changing conditions.


Asunto(s)
Dispersión de Semillas , Taraxacum , Animales , Semillas , Dispersión de Semillas/fisiología , Plantas
5.
Phys Rev Lett ; 105(23): 235005, 2010 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-21231476

RESUMEN

For the phenomenological description of magnetohydrodynamic turbulence competing models exist, e.g., Boldyrev [Phys. Rev. Lett. 96, 115002 (2006)] and Gogoberidze [Phys. Plasmas 14, 022304 (2007)], which predict the same Eulerian inertial-range scaling of the turbulent energy spectrum although they employ fundamentally different basic interaction mechanisms. A relation is found that links the Lagrangian frequency spectrum with the autocorrelation time scale of the turbulent fluctuations τ(ac) and the associated cascade time scale τ(cas). Thus, the Lagrangian energy spectrum can serve to identify weak (τ(ac) ≪ τ(cas)) and strong (τ(ac) ∼ τ(cas)) interaction mechanisms providing insight into the turbulent energy cascade. The new approach is illustrated by results from direct numerical simulations of two- and three-dimensional incompressible MHD turbulence.

6.
J Mech Behav Biomed Mater ; 112: 104041, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32891976

RESUMEN

The mechanical properties of plants are important for understanding plant biomechanics and for breeding new plants that can survive in challenging environments. Thus, accurate and reliable methods are required for the determination of mechanical properties such as stiffness and Young's modulus of elasticity. Much attention has been paid to the application of static methods to plants, while dynamic methods have received considerably less attention. In the present study, a dynamic forced vibration method for mechanical characterisation of Arabidopsis inflorescence stems was developed and validated against the conventional three-point bending test. Compared to dynamic tests based on free vibration, the current method allows to determine simultaneously more than one natural frequency, thus increasing the overall accuracy of the results. In addition, this method can be applied to the top parts of the stems that are more flexible, and where application of the three-point bending test is often limited. To demonstrate one of the potential applications of this method, it was applied to evaluate the influence of turgor pressure on the mechanical properties of Arabidopsis stems. Overall, the new dynamic testing approach has been shown to provide reliable data for the local mechanical properties along the Arabidopsis inflorescence stem.


Asunto(s)
Arabidopsis , Fenómenos Biomecánicos , Módulo de Elasticidad , Elasticidad , Vibración
7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(1 Pt 2): 015302, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22400616

RESUMEN

The nonlinear dynamics of magnetic helicity HM, which is responsible for large-scale magnetic structure formation in electrically conducting turbulent media, is investigated in forced and decaying three-dimensional magnetohydrodynamic turbulence. This is done with the help of high-resolution direct numerical simulations and statistical closure theory. The numerically observed spectral scaling of HM is at variance with earlier work using a statistical closure model [Pouquet et al., J. Fluid Mech. 77, 321 (1976)]. By revisiting this theory, a universal dynamical balance relation is found that includes the effects of kinetic helicity as well as kinetic and magnetic energies on the inverse cascade of HM and explains the above-mentioned discrepancy. Consideration of the result in the context of mean-field dynamo theory suggests a nonlinear modification of the α-dynamo effect, which is important in the context of magnetic-field excitation in turbulent plasmas.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda