Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
iScience ; 27(3): 109107, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38384847

RESUMEN

Most mammalian cells prevent viral infection and proliferation by expressing various restriction factors and sensors that activate the immune system. Several host restriction factors that inhibit human immunodeficiency virus type 1 (HIV-1) have been identified, but most of them are antagonized by viral proteins. Here, we describe CCHC-type zinc-finger-containing protein 3 (ZCCHC3) as a novel HIV-1 restriction factor that suppresses the production of HIV-1 and other retroviruses, but does not appear to be directly antagonized by viral proteins. It acts by binding to Gag nucleocapsid (GagNC) via zinc-finger motifs, which inhibits viral genome recruitment and results in genome-deficient virion production. ZCCHC3 also binds to the long terminal repeat on the viral genome via the middle-folded domain, sequestering the viral genome to P-bodies, which leads to decreased viral replication and production. This distinct, dual-acting antiviral mechanism makes upregulation of ZCCHC3 a novel potential therapeutic strategy.

2.
Pathogens ; 13(1)2023 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-38251326

RESUMEN

Pigs are important animals for meat production but can carry several zoonotic diseases, including the Japanese encephalitis virus, Nipah virus, and influenza viruses. Several Orthomyxoviridae and Coronavirinae respiratory viruses require cleavage of envelope proteins to acquire viral infectivity and consequently, need a host protease or the addition of exogenous trypsin for efficient propagation. Host TMPRSS2 is a key protease responsible for viral cleavage. Stable expression of human TMPRSS2 in African green monkey-derived Vero cells can enhance the porcine epidemic diarrhea virus. However, considering the narrow host tropism of viruses, a porcine cell line expressing pig TMPRSS2 could be optimal for replicating pig-derived viruses. Herein, we generated and evaluated a pig-derived PK-15 cell line stably expressing pig TMPRSS2. This cell line markedly (>1000-fold) and specifically enhanced the growth of influenza viruses. Furthermore, we demonstrated the usefulness of a PK-15 cell line lacking the Stat2 gene with a stable expression of pig TMPRSS2 for efficient virus isolation from clinical samples in the presence of type I interferons. Therefore, PK-15 cells expressing pig TMPRSS2 could be a valuable and promising tool for virus isolation, vaccine production, and virological studies of TMPRSS2-dependent viruses.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda