Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Cell ; 156(5): 907-19, 2014 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-24581492

RESUMEN

Recent studies recognize a vast diversity of noncoding RNAs with largely unknown functions, but few have examined interspersed repeat sequences, which constitute almost half our genome. RNA hybridization in situ using C0T-1 (highly repeated) DNA probes detects surprisingly abundant euchromatin-associated RNA comprised predominantly of repeat sequences (C0T-1 RNA), including LINE-1. C0T-1-hybridizing RNA strictly localizes to the interphase chromosome territory in cis and remains stably associated with the chromosome territory following prolonged transcriptional inhibition. The C0T-1 RNA territory resists mechanical disruption and fractionates with the nonchromatin scaffold but can be experimentally released. Loss of repeat-rich, stable nuclear RNAs from euchromatin corresponds to aberrant chromatin distribution and condensation. C0T-1 RNA has several properties similar to XIST chromosomal RNA but is excluded from chromatin condensed by XIST. These findings impact two "black boxes" of genome science: the poorly understood diversity of noncoding RNA and the unexplained abundance of repetitive elements.


Asunto(s)
Cromosomas de los Mamíferos/química , Eucromatina/química , Interfase , ARN no Traducido/análisis , Animales , Núcleo Celular/química , Humanos , Células Híbridas , Elementos de Nucleótido Esparcido Largo , Ratones , ARN no Traducido/genética , Secuencias Repetitivas de Ácidos Nucleicos , Transcripción Genética
2.
Cell ; 149(3): 630-41, 2012 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-22541433

RESUMEN

In female mouse embryos, somatic cells undergo a random form of X chromosome inactivation (XCI), whereas extraembryonic trophoblast cells in the placenta undergo imprinted XCI, silencing exclusively the paternal X chromosome. Initiation of imprinted XCI requires a functional maternal allele of the X-linked gene Rnf12, which encodes the ubiquitin ligase Rnf12/RLIM. We find that knockout (KO) of Rnf12 in female mammary glands inhibits alveolar differentiation and milk production upon pregnancy, with alveolar cells that lack RLIM undergoing apoptosis as they begin to differentiate. Genetic analyses demonstrate that these functions are mediated primarily by the paternal Rnf12 allele due to nonrandom maternal XCI in mammary epithelial cells. These results identify paternal Rnf12/RLIM as a critical survival factor for milk-producing alveolar cells and, together with population models, reveal implications of transgenerational epigenetic inheritance.


Asunto(s)
Supervivencia Celular , Glándulas Mamarias Animales/citología , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Epigénesis Genética , Femenino , Impresión Genómica , Masculino , Glándulas Mamarias Animales/fisiología , Ratones , Embarazo , Ubiquitina-Proteína Ligasas/genética , Inactivación del Cromosoma X
3.
Nature ; 511(7507): 86-9, 2014 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-24870238

RESUMEN

In female mice, two forms of X-chromosome inactivation (XCI) ensure the selective silencing of female sex chromosomes during mouse embryogenesis. Beginning at the four-cell stage, imprinted XCI (iXCI) exclusively silences the paternal X chromosome. Later, around implantation, epiblast cells of the inner cell mass that give rise to the embryo reactivate the paternal X chromosome and undergo a random form of XCI (rXCI). Xist, a long non-coding RNA crucial for both forms of XCI, is activated by the ubiquitin ligase RLIM (also known as Rnf12). Although RLIM is required for triggering iXCI in mice, its importance for rXCI has been controversial. Here we show that RLIM levels are downregulated in embryonic cells undergoing rXCI. Using mouse genetics we demonstrate that female cells lacking RLIM from pre-implantation stages onwards show hallmarks of XCI, including Xist clouds and H3K27me3 foci, and have full embryogenic potential. These results provide evidence that RLIM is dispensable for rXCI, indicating that in mice an RLIM-independent mechanism activates Xist in the embryo proper.


Asunto(s)
Estratos Germinativos/embriología , Estratos Germinativos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Inactivación del Cromosoma X/genética , Animales , Regulación hacia Abajo , Implantación del Embrión , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Femenino , Histonas/química , Histonas/metabolismo , Hibridación Fluorescente in Situ , Lisina/metabolismo , Metilación , Ratones , Ratones Noqueados , ARN Largo no Codificante/genética , Ubiquitina-Proteína Ligasas/genética
4.
Nature ; 500(7462): 296-300, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23863942

RESUMEN

Down's syndrome is a common disorder with enormous medical and social costs, caused by trisomy for chromosome 21. We tested the concept that gene imbalance across an extra chromosome can be de facto corrected by manipulating a single gene, XIST (the X-inactivation gene). Using genome editing with zinc finger nucleases, we inserted a large, inducible XIST transgene into the DYRK1A locus on chromosome 21, in Down's syndrome pluripotent stem cells. The XIST non-coding RNA coats chromosome 21 and triggers stable heterochromatin modifications, chromosome-wide transcriptional silencing and DNA methylation to form a 'chromosome 21 Barr body'. This provides a model to study human chromosome inactivation and creates a system to investigate genomic expression changes and cellular pathologies of trisomy 21, free from genetic and epigenetic noise. Notably, deficits in proliferation and neural rosette formation are rapidly reversed upon silencing one chromosome 21. Successful trisomy silencing in vitro also surmounts the major first step towards potential development of 'chromosome therapy'.


Asunto(s)
Cromosomas Humanos Par 21/genética , Compensación de Dosificación (Genética) , Síndrome de Down/genética , ARN Largo no Codificante/metabolismo , Animales , Línea Celular , Proliferación Celular , Metilación de ADN , Síndrome de Down/terapia , Silenciador del Gen , Humanos , Células Madre Pluripotentes Inducidas , Masculino , Ratones , Mutagénesis Insercional , Neurogénesis , ARN Largo no Codificante/genética , Cromatina Sexual/genética , Inactivación del Cromosoma X/genética
5.
Nature ; 467(7318): 977-81, 2010 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-20962847

RESUMEN

Two forms of X-chromosome inactivation (XCI) ensure the selective silencing of female sex chromosomes during mouse embryogenesis. Imprinted XCI begins with the detection of Xist RNA expression on the paternal X chromosome (Xp) at about the four-cell stage of embryonic development. In the embryonic tissues of the inner cell mass, a random form of XCI occurs in blastocysts that inactivates either Xp or the maternal X chromosome (Xm). Both forms of XCI require the non-coding Xist RNA that coats the inactive X chromosome from which it is expressed. Xist has crucial functions in the silencing of X-linked genes, including Rnf12 (refs 3, 4) encoding the ubiquitin ligase RLIM (RING finger LIM-domain-interacting protein). Here we show, by targeting a conditional knockout of Rnf12 to oocytes where RLIM accumulates to high levels, that the maternal transmission of the mutant X chromosome (Δm) leads to lethality in female embryos as a result of defective imprinted XCI. We provide evidence that in Δm female embryos the initial formation of Xist clouds and Xp silencing are inhibited. In contrast, embryonic stem cells lacking RLIM are able to form Xist clouds and silence at least some X-linked genes during random XCI. These results assign crucial functions to the maternal deposit of Rnf12/RLIM for the initiation of imprinted XCI.


Asunto(s)
Cromosomas de los Mamíferos/genética , Impresión Genómica , Madres , Proteínas Represoras/metabolismo , Inactivación del Cromosoma X/genética , Cromosoma X/genética , Animales , Animales Congénicos , Blastocisto/metabolismo , Línea Celular , Pérdida del Embrión/genética , Padre , Femenino , Silenciador del Gen , Masculino , Ratones , Ratones Transgénicos , ARN Largo no Codificante , ARN no Traducido/genética , Proteínas Represoras/deficiencia , Proteínas Represoras/genética , Ubiquitina-Proteína Ligasas
6.
bioRxiv ; 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38260534

RESUMEN

The linear DNA sequence of mammalian chromosomes is organized in large blocks of DNA with similar sequence properties, producing a pattern of dark and light staining bands on mitotic chromosomes. Cytogenetic banding is essentially invariant between people and cell-types and thus may be assumed unrelated to genome regulation. We investigate whether large blocks of Alu-rich R-bands and L1-rich G-bands provide a framework upon which functional genome architecture is built. We examine two models of large-scale chromatin condensation: X-chromosome inactivation and formation of senescence-associated heterochromatin foci (SAHFs). XIST RNA triggers gene silencing but also formation of the condensed Barr Body (BB), thought to reflect cumulative gene silencing. However, we find Alu-rich regions are depleted from the L1-rich BB, supporting it is a dense core but not the entire chromosome. Alu-rich bands are also gene-rich, affirming our earlier findings that genes localize at the outer periphery of the BB. SAHFs similarly form within each territory by coalescence of syntenic L1 regions depleted for highly Alu-rich DNA. Analysis of senescent cell Hi-C data also shows large contiguous blocks of G-band and R-band DNA remodel as a segmental unit. Entire dark-bands gain distal intrachromosomal interactions as L1-rich regions form the SAHF. Most striking is that sharp Alu peaks within R-bands resist these changes in condensation. We further show that Chr19, which is exceptionally Alu rich, fails to form a SAHF. Collective results show regulation of genome architecture corresponding to large blocks of DNA and demonstrate resistance of segments with high Alu to chromosome condensation.

7.
Cell Rep ; 42(7): 112686, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37384527

RESUMEN

XIST RNA triggers chromosome-wide gene silencing and condenses an active chromosome into a Barr body. Here, we use inducible human XIST to examine early steps in the process, showing that XIST modifies cytoarchitecture before widespread gene silencing. In just 2-4 h, barely visible transcripts populate the large "sparse zone" surrounding the smaller "dense zone"; importantly, density zones exhibit different chromatin impacts. Sparse transcripts immediately trigger immunofluorescence for H2AK119ub and CIZ1, a matrix protein. H3K27me3 appears hours later in the dense zone, which enlarges with chromosome condensation. Genes examined are silenced after compaction of the RNA/DNA territory. Insights into this come from the findings that the A-repeat alone can silence genes and rapidly, but only where dense RNA supports sustained histone deacetylation. We propose that sparse XIST RNA quickly impacts architectural elements to condense the largely non-coding chromosome, coalescing RNA density that facilitates an unstable, A-repeat-dependent step required for gene silencing.


Asunto(s)
ARN Largo no Codificante , Inactivación del Cromosoma X , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Cromatina , Silenciador del Gen , Cromosoma X/metabolismo
8.
J Cell Biol ; 178(6): 951-64, 2007 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-17846170

RESUMEN

In myotonic dystrophy type 1 (DM1), triplet repeat expansion in the 3' untranslated region of dystrophia myotonica protein kinase (DMPK) causes the nuclear retention of mutant messenger RNA (mRNA). Although the DMPK gene locus positions precisely at the outer edge of a factor-rich SC-35 domain, the normal mRNA consistently accumulates within the domain, and this RNA is depleted upon transcriptional inhibition. In DM1, mutant transcripts detach from the gene but accumulate in granules that abut but do not enter SC-35 domains, suggesting that RNA entry into the domain is blocked. Despite their exclusion from these compartments, mutant transcripts are spliced. MBNL1 (muscleblind-like protein 1) is an alternative splicing factor that becomes highly concentrated with mutant RNA foci. Small interfering RNA-mediated knockdown of MBNL1 promotes the accumulation or entry of newly synthesized mutant transcripts in the SC-35 domain. Collectively, these data suggest that an initial step in the intranuclear path of some mRNAs is passage from the gene into an SC-35 domain and implicate these structures in postsplicing steps before export.


Asunto(s)
Distrofia Miotónica/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Empalme del ARN , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Células Cultivadas , Niño , Humanos , Masculino , Modelos Moleculares , Mutación , Mioblastos Esqueléticos/metabolismo , Distrofia Miotónica/genética , Proteína Quinasa de Distrofia Miotónica , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína , Transporte de ARN , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Expansión de Repetición de Trinucleótido
9.
J Cell Biol ; 162(6): 981-90, 2003 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-12975345

RESUMEN

Typically, eukaryotic nuclei contain 10-30 prominent domains (referred to here as SC-35 domains) that are concentrated in mRNA metabolic factors. Here, we show that multiple specific genes cluster around a common SC-35 domain, which contains multiple mRNAs. Nonsyntenic genes are capable of associating with a common domain, but domain "choice" appears random, even for two coordinately expressed genes. Active genes widely separated on different chromosome arms associate with the same domain frequently, assorting randomly into the 3-4 subregions of the chromosome periphery that contact a domain. Most importantly, visualization of six individual chromosome bands showed that large genomic segments ( approximately 5 Mb) have striking differences in organization relative to domains. Certain bands showed extensive contact, often aligning with or encircling an SC-35 domain, whereas others did not. All three gene-rich reverse bands showed this more than the gene-poor Giemsa dark bands, and morphometric analyses demonstrated statistically significant differences. Similarly, late-replicating DNA generally avoids SC-35 domains. These findings suggest a functional rationale for gene clustering in chromosomal bands, which relates to nuclear clustering of genes with SC-35 domains. Rather than random reservoirs of splicing factors, or factors accumulated on an individual highly active gene, we propose a model of SC-35 domains as functional centers for a multitude of clustered genes, forming local euchromatic "neighborhoods."


Asunto(s)
Núcleo Celular/genética , Estructuras Cromosómicas/genética , Eucromatina/genética , Familia de Multigenes/genética , Proteínas Nucleares/genética , Ribonucleoproteínas , Línea Celular , Bandeo Cromosómico , Colágeno Tipo I/biosíntesis , Colágeno Tipo I/genética , Replicación del ADN/genética , Células Eucariotas/citología , Células Eucariotas/metabolismo , Técnica del Anticuerpo Fluorescente , Regulación de la Expresión Génica/genética , Humanos , ARN Mensajero/genética , Factores de Empalme Serina-Arginina
10.
J Cell Physiol ; 216(2): 445-52, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18340642

RESUMEN

The clinical and research value of human embryonic stem cells (hESC) depends upon maintaining their epigenetically naïve, fully undifferentiated state. Inactivation of one X chromosome in each cell of mammalian female embryos is a paradigm for one of the earliest steps in cell specialization through formation of facultative heterochromatin. Mouse ES cells are derived from the inner cell mass (ICM) of blastocyst stage embryos prior to X-inactivation, and cultured murine ES cells initiate this process only upon differentiation. Less is known about human X-inactivation during early development. To identify a human ES cell model for X-inactivation and study differences in the epigenetic state of hESC lines, we investigated X-inactivation in all growth competent, karyotypically normal, NIH approved, female hESC lines and several sublines. In the vast majority of undifferentiated cultures of nine lines examined, essentially all cells exhibit hallmarks of X-inactivation. However, subcultures of any hESC line can vary in X-inactivation status, comprising distinct sublines. Importantly, we identified rare sublines that have not yet inactivated Xi and retain competence to undergo X-inactivation upon differentiation. Other sublines exhibit defects in counting or maintenance of XIST expression on Xi. The few hESC sublines identified that have not yet inactivated Xi may reflect the earlier epigenetic state of the human ICM and represent the most promising source of NIH hESC for study of human X-inactivation. The many epigenetic anomalies seen indicate that maintenance of fully unspecialized cells, which have not formed Xi facultative heterochromatin, is a delicate epigenetic balance difficult to maintain in culture.


Asunto(s)
Diferenciación Celular , Línea Celular , Células Madre Embrionarias/fisiología , Epigénesis Genética , Inactivación del Cromosoma X , Animales , Cromosomas Humanos X , Compensación de Dosificación (Genética) , Células Madre Embrionarias/citología , Femenino , Humanos , Ratones , ARN Largo no Codificante , ARN no Traducido/genética , ARN no Traducido/metabolismo
11.
Mol Biol Cell ; 15(1): 197-206, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14617810

RESUMEN

Previous studies have shown that in a given cell type, certain active genes associate with SC-35 domains, nuclear regions rich in RNA metabolic factors and excluded from heterochromatin. This organization is not seen for all active genes; therefore, it is important to determine whether and when this locus-specific organization arises during development and differentiation of specific cell types. Here, we investigate whether gene organization relative to SC-35 domains is cell type specific by following several muscle and nonmuscle genes in human fibroblasts, committed but proliferative myoblasts, and terminally differentiated muscle. Although no change was seen for other loci, two muscle genes (Human beta-cardiac myosin heavy chain and myogenin) became localized to the periphery of an SC-35 domain in terminally differentiated muscle nuclei, but not in proliferative myoblasts or in fibroblasts. There was no apparent change in gene localization relative to either the chromosome territory or the heterochromatic compartment; thus, the gene repositioning seemed to occur specifically with respect to SC-35 domains. This gene relocation adjacent to a prominent SC-35 domain was recapitulated in mouse 3T3 cells induced into myogenesis by introduction of MyoD. Results demonstrate a cell type-specific reorganization of specific developmentally regulated loci relative to large domains of RNA metabolic factors, which may facilitate developmental regulation of genome expression.


Asunto(s)
Núcleo Celular/metabolismo , Desarrollo de Músculos/fisiología , Mioblastos/metabolismo , Miogenina/metabolismo , Miosinas Ventriculares/metabolismo , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Embrión de Pollo , Cromatina/metabolismo , Humanos , Hibridación Fluorescente in Situ , Ratones , Microscopía Fluorescente , Proteína MioD/metabolismo , Células 3T3 NIH , Subunidades de Proteína/metabolismo
12.
Cell Rep ; 18(12): 2943-2956, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28329686

RESUMEN

This study reveals that high-copy satellite II (HSATII) sequences in the human genome can bind and impact distribution of chromatin regulatory proteins and that this goes awry in cancer. In many cancers, master regulatory proteins form two types of cancer-specific nuclear bodies, caused by locus-specific deregulation of HSATII. DNA demethylation at the 1q12 mega-satellite, common in cancer, causes PRC1 aggregation into prominent Cancer-Associated Polycomb (CAP) bodies. These loci remain silent, whereas HSATII loci with reduced PRC1 become derepressed, reflecting imbalanced distribution of UbH2A on these and other PcG-regulated loci. Large nuclear foci of HSATII RNA form and sequester copious MeCP2 into Cancer-Associated Satellite Transcript (CAST) bodies. Hence, HSATII DNA and RNA have an exceptional capacity to act as molecular sponges and sequester chromatin regulatory proteins into abnormal nuclear bodies in cancer. The compartmentalization of regulatory proteins within nuclear structure, triggered by demethylation of "junk" repeats, raises the possibility that this contributes to further compromise of the epigenome and neoplastic progression.


Asunto(s)
Desmetilación del ADN , ADN Satélite/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Neoplasias/genética , Proteínas del Grupo Polycomb/metabolismo , ARN/metabolismo , Proteína BRCA1/metabolismo , Secuencia de Bases , Línea Celular Tumoral , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Sitios Genéticos , Humanos , Modelos Biológicos , Complejo Represivo Polycomb 1/metabolismo , Agregado de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo
13.
Cell Rep ; 21(13): 3691-3699, 2017 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-29281819

RESUMEN

During female mouse embryogenesis, two forms of X chromosome inactivation (XCI) ensure dosage compensation from sex chromosomes. Beginning at the four-cell stage, imprinted XCI (iXCI) exclusively silences the paternal X (Xp), and this pattern is maintained in extraembryonic cell types. Epiblast cells, which give rise to the embryo proper, reactivate the Xp (XCR) and undergo a random form of XCI (rXCI) around implantation. Both iXCI and rXCI depend on the long non-coding RNA Xist. The ubiquitin ligase RLIM is required for iXCI in vivo and occupies a central role in current models of rXCI. Here, we demonstrate the existence of Rlim-dependent and Rlim-independent pathways for rXCI in differentiating female ESCs. Upon uncoupling these pathways, we find more efficient Rlim-independent XCI in ESCs cultured under physiological oxygen conditions. Our results revise current models of rXCI and suggest that caution must be taken when comparing XCI studies in ESCs and mice.


Asunto(s)
Células Madre Embrionarias de Ratones/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Inactivación del Cromosoma X/genética , Animales , Técnicas de Cultivo de Célula , Femenino , Ratones , Proteínas Mutantes/metabolismo
14.
Anat Rec A Discov Mol Cell Evol Biol ; 288(7): 664-75, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16761280

RESUMEN

Direct localization of specific genes, RNAs, and proteins has allowed the dissection of individual nuclear speckles in relation to the molecular biology of gene expression. Nuclear speckles (aka SC35 domains) are essentially ubiquitous structures enriched for most pre-mRNA metabolic factors, yet their relationship to gene expression has been poorly understood. Analyses of specific genes and their spliced or mature mRNA strongly support that SC35 domains are hubs of activity, not stores of inert factors detached from gene expression. We propose that SC35 domains are hubs that spatially link expression of specific pre-mRNAs to rapid recycling of copious RNA metabolic complexes, thereby facilitating expression of many highly active genes. In addition to increasing the efficiency of each step, sequential steps in gene expression are structurally integrated at each SC35 domain, consistent with other evidence that the biochemical machineries for transcription, splicing, and mRNA export are coupled. Transcription and splicing are subcompartmentalized at the periphery, with largely spliced mRNA entering the domain prior to export. In addition, new findings presented here begin to illuminate the structural underpinnings of a speckle by defining specific perturbations of phosphorylation that promote disassembly or assembly of an SC35 domain in relation to other components. Results thus far are consistent with the SC35 spliceosome assembly factor as an integral structural component. Conditions that disperse SC35 also disperse poly(A) RNA, whereas the splicing factor ASF/SF2 can be dispersed under conditions in which SC35 or SRm300 remain as intact components of a core domain.


Asunto(s)
Proteínas Nucleares/química , Proteínas Nucleares/fisiología , Precursores del ARN/química , Precursores del ARN/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/fisiología , Línea Celular , Núcleo Celular/química , Núcleo Celular/genética , Núcleo Celular/metabolismo , Femenino , Regulación de la Expresión Génica , Humanos , Proteínas Nucleares/genética , Estructura Terciaria de Proteína/genética , Precursores del ARN/biosíntesis , Empalme del ARN/genética , Ribonucleoproteínas/genética , Factores de Empalme Serina-Arginina , Empalmosomas/química , Empalmosomas/genética , Empalmosomas/metabolismo
15.
Elife ; 52016 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-27642011

RESUMEN

Mammalian X-linked gene expression is highly regulated as female cells contain two and male one X chromosome (X). To adjust the X gene dosage between genders, female mouse preimplantation embryos undergo an imprinted form of X chromosome inactivation (iXCI) that requires both Rlim (also known as Rnf12) and the long non-coding RNA Xist. Moreover, it is thought that gene expression from the single active X is upregulated to correct for bi-allelic autosomal (A) gene expression. We have combined mouse genetics with RNA-seq on single mouse embryos to investigate functions of Rlim on the temporal regulation of iXCI and Xist. Our results reveal crucial roles of Rlim for the maintenance of high Xist RNA levels, Xist clouds and X-silencing in female embryos at blastocyst stages, while initial Xist expression appears Rlim-independent. We find further that X/A upregulation is initiated in early male and female preimplantation embryos.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Genes Ligados a X , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Ratones , ARN Largo no Codificante/metabolismo , Análisis de Secuencia de ARN , Inactivación del Cromosoma X
16.
Curr Protoc Hum Genet ; Chapter 4: Unit 4.15, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23315927

RESUMEN

Fluorescence in situ hybridization (FISH) is not a singular technique, but a battery of powerful and versatile tools for examining the distribution of endogenous genes and RNAs in precise context with each other and in relation to specific proteins or cell structures. This unit offers the details of highly sensitive and successful protocols that were initially developed largely in our lab and honed over a number of years. Our emphasis is on analysis of nuclear RNAs and DNA to address specific biological questions about nuclear structure, pre-mRNA metabolism, or the role of noncoding RNAs; however, cytoplasmic RNA detection is also discussed. Multifaceted molecular cytological approaches bring precise resolution and sensitive multicolor detection to illuminate the organization and functional roles of endogenous genes and their RNAs within the native structure of fixed cells. Solutions to several common technical pitfalls are discussed, as are cautions regarding the judicious use of digital imaging and the rigors of analyzing and interpreting complex molecular cytological results.


Asunto(s)
Núcleo Celular/genética , ADN/análisis , Hibridación Fluorescente in Situ/métodos , ARN/análisis , Animales , Sondas de ADN , Humanos , Indicadores y Reactivos , Sondas de Oligonucleótidos
17.
Science ; 341(6147): 789-92, 2013 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-23907535

RESUMEN

An inducible program of inflammatory gene expression is central to antimicrobial defenses. This response is controlled by a collaboration involving signal-dependent activation of transcription factors, transcriptional co-regulators, and chromatin-modifying factors. We have identified a long noncoding RNA (lncRNA) that acts as a key regulator of this inflammatory response. Pattern recognition receptors such as the Toll-like receptors induce the expression of numerous lncRNAs. One of these, lincRNA-Cox2, mediates both the activation and repression of distinct classes of immune genes. Transcriptional repression of target genes is dependent on interactions of lincRNA-Cox2 with heterogeneous nuclear ribonucleoprotein A/B and A2/B1. Collectively, these studies unveil a central role of lincRNA-Cox2 as a broad-acting regulatory component of the circuit that controls the inflammatory response.


Asunto(s)
Regulación de la Expresión Génica , Inmunidad Innata/genética , Inflamación/genética , Macrófagos/inmunología , Macrófagos/metabolismo , ARN Largo no Codificante/genética , Animales , Línea Celular , Núcleo Celular/metabolismo , Ciclooxigenasa 2/genética , Citocinas/genética , Citocinas/metabolismo , Citosol/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Activación de Macrófagos , Ratones , Modelos Inmunológicos , Interferencia de ARN , ARN Largo no Codificante/metabolismo , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Activación Transcripcional
18.
Nat Struct Mol Biol ; 18(1): 107-14, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21131981

RESUMEN

We developed a general approach that combines chromosome conformation capture carbon copy (5C) with the Integrated Modeling Platform (IMP) to generate high-resolution three-dimensional models of chromatin at the megabase scale. We applied this approach to the ENm008 domain on human chromosome 16, containing the α-globin locus, which is expressed in K562 cells and silenced in lymphoblastoid cells (GM12878). The models accurately reproduce the known looping interactions between the α-globin genes and their distal regulatory elements. Further, we find using our approach that the domain folds into a single globular conformation in GM12878 cells, whereas two globules are formed in K562 cells. The central cores of these globules are enriched for transcribed genes, whereas nontranscribed chromatin is more peripheral. We propose that globule formation represents a higher-order folding state related to clustering of transcribed genes around shared transcription machineries, as previously observed by microscopy.


Asunto(s)
Cromatina/química , Cromosomas Humanos Par 16/química , Globinas alfa/genética , Cromatina/ultraestructura , Cromosomas Humanos Par 16/metabolismo , Cromosomas Humanos Par 16/ultraestructura , Humanos , Hibridación Fluorescente in Situ , Células K562 , Modelos Moleculares , Conformación de Ácido Nucleico , Globinas alfa/química
19.
J Cell Biol ; 186(4): 491-507, 2009 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-19704020

RESUMEN

How XIST RNA strictly localizes across the inactive X chromosome is unknown; however, prophase release of human XIST RNA provides a clue. Tests of inhibitors that mimic mitotic chromatin modifications implicated an indirect role of PP1 (protein phosphatase 1), potentially via its interphase repression of Aurora B kinase (AURKB), which phosphorylates H3 and chromosomal proteins at prophase. RNA interference to AURKB causes mitotic retention of XIST RNA, unlike other mitotic or broad kinase inhibitors. Thus, AURKB plays an unexpected role in regulating RNA binding to heterochromatin, independent of mechanics of mitosis. H3 phosphorylation (H3ph) was shown to precede XIST RNA release, whereas results exclude H1ph involvement. Of numerous Xi chromatin (chromosomal protein) hallmarks, ubiquitination closely follows XIST RNA retention or release. Surprisingly, H3S10ph staining (but not H3S28ph) is excluded from Xi and is potentially linked to ubiquitination. Results suggest a model of multiple distinct anchor points for XIST RNA. This study advances understanding of RNA chromosome binding and the roles of AURKB and demonstrates a novel approach to manipulate and study XIST RNA.


Asunto(s)
Cromatina/metabolismo , Cromosomas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , ARN no Traducido/metabolismo , ARN/metabolismo , Animales , Aurora Quinasa B , Aurora Quinasas , Ciclo Celular/fisiología , Línea Celular , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas/genética , Activación Enzimática , Inhibidores Enzimáticos/metabolismo , Femenino , Humanos , Indoles/metabolismo , Masculino , Complejo Mediador , Modelos Moleculares , Proteína Fosfatasa 1/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , ARN/genética , Interferencia de ARN , ARN Largo no Codificante , ARN no Traducido/genética , Sulfonamidas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transgenes
20.
Proc Natl Acad Sci U S A ; 103(20): 7688-93, 2006 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-16682630

RESUMEN

We investigated whether genes escape X chromosome inactivation by positioning outside of the territory defined by XIST RNA. Results reveal an unanticipated higher order organization of genes and noncoding sequences. All 15 X-linked genes, regardless of activity, position on the border of the XIST RNA territory, which resides outside of the DAPI-dense Barr body. Although more strictly delineated on the inactive X chromosome (Xi), all genes localized predominantly to the outer rim of the Xi and active X chromosome. This outer rim is decorated only by X chromosome DNA paints and is excluded from both the XIST RNA and dense DAPI staining. The only DNA found well within the Barr body and XIST RNA territory was centromeric and Cot-1 DNA; hence, the core of the X chromosome essentially excludes genes and is composed primarily of noncoding repeat-rich DNA. Moreover, we show that this core of repetitive sequences is expressed throughout the nucleus yet is silenced throughout Xi, providing direct evidence for chromosome-wide regulation of "junk" DNA transcription. Collective results suggest that the Barr body, long presumed to be the physical manifestation of silenced genes, is in fact composed of a core of silenced noncoding DNA. Instead of acting at a local gene level, XIST RNA appears to interact with and silence core architectural elements to effectively condense and shut down the Xi.


Asunto(s)
Cromosomas Humanos X/genética , Silenciador del Gen , Genes Ligados a X , Inactivación del Cromosoma X , Cromatina/genética , Cromatina/metabolismo , Cromosomas Humanos X/ultraestructura , Femenino , Humanos , Hibridación in Situ , ARN Largo no Codificante , ARN no Traducido/genética , Cromatina Sexual/genética , Transcripción Genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda