Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Environ Sci Technol ; 55(6): 4007-4016, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33666414

RESUMEN

Bulk metal doping and surface phosphate modification were synergically adopted in a rational design to upgrade the CeO2 catalyst, which is highly active but easily deactivated for the catalytic oxidation of chlorinated volatile organic compounds (Cl-VOCs). The metal doping increased the redox ability and defect sites of CeO2, which mostly promoted catalytic activity and inhibited the formation of dechlorinated byproducts but generated polychlorinated byproducts. The subsequent surface modification of the metal-doped CeO2 catalysts with nonmetallic phosphate completely suppressed the formation of polychlorinated byproducts and, more importantly, enhanced the stability of the surface structure by forming a chainmail layer. A highly active, durable, and selective catalyst of phosphate-functionalized RuOx-CeO2 was the most promising among all the metal-doped (Ru, Pd, Pt, Cr, Mn, Fe, Co, and Cu) CeO2 catalysts investigated owing to the prominent chemical stability of RuOx and its superior versatility in the catalytic oxidation of different kinds of Cl-VOCs and other typical pollutants, including dimethyl sulfide, CO, and C3H8. Moreover, the chemical stability of the catalyst, including its bulk and surface structural stability, was investigated by combining intensive treatment with HCl/H2O or HCl with subsequent ex situ ultraviolet-visible light Raman spectroscopy and confirmed the superior resistance to Cl poisoning of the phosphate-functionalized RuOx-CeO2. This work exemplifies a promising strategy for developing ideal catalysts for the removal of Cl-VOCs and provides a catalyst with the superior catalytic performance in Cl-VOC oxidation to date.


Asunto(s)
Fosfatos , Catálisis , Oxidación-Reducción
2.
Environ Sci Technol ; 55(20): 14204-14214, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34623146

RESUMEN

MnO2 nanorods with exposed (110), (100), or (310) facets were prepared and investigated for catalytic oxidation of chlorobenzene, then the (110)-exposed MnO2 nanorod was screened as the candidate parent and further modified by Pt and/or Mo with different contents. The loading of Pt enhanced activity and versatility of the pristine MnO2, but the polychlorinated byproducts and Cl2 were promoted, conversely, as the decoration of Mo inhibited the polychlorinated byproducts and improved durability. Determination of structure and properties suggested that Pt facilitated the formation of more oxygen vacancies/Mn3+ and surface adsorbed oxygen weakened the bonds of surface lattice oxygen, while Mo stabilized surface lattice oxygen and increased acid sites, especially Brønsted acid sites. Expectedly, Pt and Mo bifunctionally modified MnO2 presented a preferable activity, selectivity, and durability along with the super resistance to H2O, high-temperature, and HCl, and no prominent deactivation was observed within 30 h at 300 °C under dry and humid conditions, even at high-temperature aging at 600 °C and HCl-pretreatment (7 h). In this work, the optimized Mo and Pt codecorated MnO2 was considered a promising catalyst toward practical applications for catalytic oxidation of actual Cl-VOCs emissions.


Asunto(s)
Compuestos de Manganeso , Nanotubos , Catálisis , Clorobencenos , Óxidos
3.
J Hazard Mater ; 385: 121581, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-31732347

RESUMEN

A unique zeolite catalyst, Fe doped ZSM-5 microsphere assembled by uniform nanorod-like crystals with hierarchical pore structure, was successfully synthesized and applied for the adsorption and degradation of trace chlorobenzene (CB) in the presence of H2O2. The organic ferric salts as the precursors, ethylene glycol as a chelating/reducing agent and the dynamic two-stage temperature-varied hydrothermal technique, together made the synthesized hierarchical Fe-ZSM-5 nanorods assembled microspheres (FZ-CA-5EG) to be characterized by abundant highly dispersed and valency-controlled framework Fe3+/2+ species. As a result of these features, the FZ-CA-5EG showed excellent ability of adsorption and degradation efficiency of CB, and enhanced durability due to negligible leaching of framework Fe species. Moreover, the hydroxyl radicals were determined as the main the reactive oxygen species of CB oxidation degradation, and a possible adsorption-oxidation degradation pathway was proposed.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda