Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Am Chem Soc ; 145(36): 20009-20020, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37665648

RESUMEN

The development of inhibitors that selectively block protein-protein interactions (PPIs) is crucial for chemical biology, medicinal chemistry, and biomedical sciences. Herein, we reported the design, synthesis, and investigation of sulfonyl-γ-AApeptide as an alternative strategy of canonical peptide-based inhibitors to disrupt hypoxia-inducible factor 1α (HIF-1α) and p300 PPI by mimicking the helical domain of HIF-1α involved in the binding to p300. The designed molecules recognized the p300 protein with high affinity and potently inhibited the hypoxia-inducible signaling pathway. Gene expression profiling supported the idea that the lead molecules selectively inhibited hypoxia-inducible genes involved in the signaling cascade. Our studies also demonstrated that both helical faces consisting of either chiral side chains or achiral sulfonyl side chains of sulfonyl-γ-AApeptides could be adopted for mimicry of the α-helix engaging in PPIs. Furthermore, these sulfonyl-γ-AApeptides were cell-permeable and exhibited favorable stability and pharmacokinetic profiles. Our results could inspire the design of helical sulfonyl-γ-AApeptides as a general strategy to mimic the protein helical domain and modulate many other PPIs.


Asunto(s)
Química Farmacéutica , Transducción de Señal , Humanos , Perfilación de la Expresión Génica , Hipoxia
2.
Chemistry ; 29(35): e202300476, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-36920943

RESUMEN

SARS-CoV-2 is still wreaking havoc all over the world with surging morbidity and high mortality. The main protease (Mpro ) is essential in the replication of SARS-CoV-2, enabling itself an active target for antiviral development. Herein, we reported the design and synthesis of a new class of peptidomimetics-constrained α, γ-AA peptides, based on which a series of aldehyde and ketoamide inhibitors of the Mpro of SARS-CoV-2 were prepared. The lead compounds showed excellent inhibitory activity in the FRET-based Mpro enzymatic assay not only for the Mpro of SARS-CoV-2 but also for SARS-CoV and MERS-CoV, along with HCoVs like HCoV-OC43, HCoV-229E, HCoV-NL63 and HKU1. The X-ray crystallographic results demonstrated that our compounds form a covalent bond with the catalytic Cys145. They also demonstrated effective antiviral activity against live SARS-CoV-2. Overall, the results suggest that α, γ-AA peptide could be a promising molecular scaffold in designing novel Mpro inhibitors of SARS-CoV-2 and other coronaviruses.


Asunto(s)
COVID-19 , Coronavirus Humano OC43 , Humanos , SARS-CoV-2 , Péptidos/farmacología , Antivirales/farmacología , Inhibidores de Proteasas/química
3.
Mar Drugs ; 20(3)2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35323495

RESUMEN

Five new alkaloids have been isolated from the lipophilic extract of the Antarctic tunicate Synoicum sp. Deep-sea specimens of Synoicum sp. were collected during a 2011 cruise of the R/V Nathanial B. Palmer to the southern Scotia Arc, Antarctica. Crude extracts from the invertebrates obtained during the cruise were screened in a zebrafish-based phenotypic assay. The Synoicum sp. extract induced embryonic dysmorphology characterized by axis truncation, leading to the isolation of aminopyrimidine substituted indolone (1-4) and indole (5-12) alkaloids. While the primary bioactivity tracked with previously reported meridianins A-G (5-11), further investigation resulted in the isolation and characterization of australindolones A-D (1-4) and the previously unreported meridianin H (12).


Asunto(s)
Alcaloides Indólicos , Pirimidinas , Urocordados/química , Animales , Regiones Antárticas , Embrión no Mamífero/anomalías , Embrión no Mamífero/efectos de los fármacos , Alcaloides Indólicos/química , Alcaloides Indólicos/toxicidad , Pirimidinas/química , Pirimidinas/toxicidad , Pez Cebra
4.
Am J Physiol Heart Circ Physiol ; 320(1): H133-H143, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33216635

RESUMEN

The usage of flavored electronic nicotine delivery systems (ENDS) is popular, specifically in the teen and young adult age-groups. The possible cardiac toxicity of the flavoring aspect of ENDS is largely unknown. Vaping, a form of electronic nicotine delivery, uses "e-liquid" to generate "e-vapor," an aerosolized mixture of nicotine and/or flavors. We report our investigation into the cardiotoxic effects of flavored e-liquids. E-vapors containing flavoring aldehydes such as vanillin and cinnamaldehyde, as indicated by mass spectrometry, were more toxic in HL-1 cardiomyocytes than fruit-flavored e-vapor. Exposure of human induced pluripotent stem cell-derived cardiomyocytes to cinnamaldehyde or vanillin-flavored e-vapor affected the beating frequency and prolonged the field potential duration of these cells more than fruit-flavored e-vapor. In addition, vanillin aldehyde-flavored e-vapor reduced the human ether-à-go-go-related gene (hERG)-encoded potassium current in transfected human embryonic kidney cells. In mice, inhalation exposure to vanillin aldehyde-flavored e-vapor for 10 wk caused increased sympathetic predominance in heart rate variability measurements. In vivo inducible ventricular tachycardia was significantly longer, and in optical mapping, the magnitude of ventricular action potential duration alternans was significantly larger in the vanillin aldehyde-flavored e-vapor-exposed mice than in controls. We conclude that the widely popular flavored ENDS are not harm free, and they have a potential for cardiac harm. More studies are needed to further assess their cardiac safety profile and long-term health effects.NEW & NOTEWORTHY The use of electronic nicotine delivery systems (ENDS) is not harm free. It is not known whether ENDS negatively affect cardiac electrophysiological function. Our study in cell lines and in mice shows that ENDS can compromise cardiac electrophysiology, leading to action potential instability and inducible ventricular arrhythmias. Further investigations are necessary to assess the long-term cardiac safety profile of ENDS products in humans and to better understand how individual components of ENDS affect cardiac toxicity.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Aromatizantes/toxicidad , Frecuencia Cardíaca/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Nicotina/toxicidad , Agonistas Nicotínicos/toxicidad , Taquicardia Ventricular/inducido químicamente , Vapeo/efectos adversos , Potenciales de Acción/efectos de los fármacos , Administración por Inhalación , Animales , Cardiotoxicidad , Canal de Potasio ERG1/metabolismo , Femenino , Aromatizantes/administración & dosificación , Células HEK293 , Humanos , Masculino , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Nicotina/administración & dosificación , Agonistas Nicotínicos/administración & dosificación , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/fisiopatología , Factores de Tiempo
5.
Med Res Rev ; 36(1): 144-68, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25545963

RESUMEN

The ongoing search for effective antiplasmodial agents remains essential in the fight against malaria worldwide. Emerging parasitic drug resistance places an urgent need to explore chemotherapies with novel structures and mechanisms of action. Natural products have historically provided effective antimalarial drug scaffolds. In an effort to search nature's chemical potential for antiplasmodial agents, unconventionally sourced organisms coupled with innovative cultivation techniques were utilized. Approximately 60,000 niche microbes from various habitats (slow-growing terrestrial fungi, Antarctic microbes, and mangrove endophytes) were cultivated on a small-scale, extracted, and used in high-throughput screening to determine antimalarial activity. About 1% of crude extracts were considered active and 6% partially active (≥ 67% inhibition at 5 and 50 µg/mL, respectively). Active extracts (685) were cultivated on a large-scale, fractionated, and screened for both antimalarial activity and cytotoxicity. High interest fractions (397) with an IC50 < 1.11 µg/mL were identified and subjected to chromatographic separation for compound characterization and dereplication. Identifying active compounds with nanomolar antimalarial activity coupled with a selectivity index tenfold higher was accomplished with two of the 52 compounds isolated. This microscale, high-throughput screening project for antiplasmodial agents is discussed in the context of current natural product drug discovery efforts.


Asunto(s)
Antimaláricos/aislamiento & purificación , Bacterias/crecimiento & desarrollo , Técnicas Bacteriológicas/métodos , Hongos/crecimiento & desarrollo , Microbiota , Micología/métodos , Animales , Bioensayo , Línea Celular Tumoral , Chlorocebus aethiops , Cromatografía , Perros , Descubrimiento de Drogas , Resistencia a Medicamentos , Humanos , Concentración 50 Inhibidora , Invertebrados/microbiología , Células de Riñón Canino Madin Darby , Espectroscopía de Resonancia Magnética , Malaria/tratamiento farmacológico , Miniaturización , Extractos Vegetales/química , Plasmodium falciparum/efectos de los fármacos , Células Vero
6.
J Nat Prod ; 79(4): 907-13, 2016 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-27023255

RESUMEN

Six new ent-labdane diterpenoids, uasdlabdanes A-F (1-6), were isolated from the aerial parts of Eupatorium obtusissmum. The new structures were elucidated through spectroscopic and spectrometric data analyses. The absolute configurations of compounds 1 and 2 were established by X-ray crystallography, and those of 3-6, by comparison of experimental and calculated electronic circular dichroism spectra. The antiproliferative activity of the compounds was studied in a panel of six representative human solid tumor cell lines and showed GI50 values ranging from 19 to >100 µM.


Asunto(s)
Antineoplásicos Fitogénicos/aislamiento & purificación , Diterpenos/aislamiento & purificación , Medicamentos Herbarios Chinos/aislamiento & purificación , Eupatorium/química , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Dicroismo Circular , Cristalografía por Rayos X , Diterpenos/química , Diterpenos/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Humanos , Lipopolisacáridos , Conformación Molecular , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Componentes Aéreos de las Plantas/química
7.
Mar Drugs ; 11(12): 5036-50, 2013 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-24351903

RESUMEN

We conducted a screening campaign to investigate fungi as a source for new antimalarial compounds. A subset of our fungal collection comprising Chinese mangrove endophytes provided over 5000 lipophilic extracts. We developed an accelerated discovery program based on small-scale cultivation for crude extract screening and a high-throughput malaria assay. Criteria for hits were developed and high priority hits were subjected to scale-up cultivation. Extracts from large scale cultivation were fractionated and these fractions subjected to both in vitro malaria and cytotoxicity screening. Criteria for advancing fractions to purification were developed, including the introduction of a selectivity index and by dereplication of known metabolites. From the Chinese mangrove endophytes, four new compounds (14-16, 18) were isolated including a new dimeric tetrahydroxanthone, dicerandrol D (14), which was found to display the most favorable bioactivity profile.


Asunto(s)
Antimaláricos/aislamiento & purificación , Productos Biológicos/aislamiento & purificación , Endófitos/aislamiento & purificación , Hongos/aislamiento & purificación , Antimaláricos/farmacología , Productos Biológicos/farmacología , Malaria/tratamiento farmacológico
8.
Life (Basel) ; 13(11)2023 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-38004274

RESUMEN

Reduced-oxidation-state phosphorus (reduced P, hereafter) compounds were likely available on the early Earth via meteorites or through various geologic processes. Due to their reactivity and high solubility, these compounds could have played a significant role in the origin of various organophosphorus compounds of biochemical significance. In the present work, we study the reactions between reduced P compounds and their oxidation products, with the three nucleosides (uridine, adenosine, and cytidine), with organic alcohols (glycerol and ethanolamine), and with the tertiary ammonium organic compound, choline chloride. These reactions were studied in the non-aqueous solvent formamide and in a semi-aqueous solvent comprised of urea: ammonium formate: water (UAFW, hereafter) at temperatures of 55-68 °C. The inorganic P compounds generated through Fenton chemistry readily dissolve in the non-aqueous and semi-aqueous solvents and react with organics to form organophosphites and organophosphates, including those which are identified as phosphate diesters. This dual approach (1) use of non-aqueous and semi-aqueous solvents and (2) use of a reactive inorganic P source to promote phosphorylation and phosphonylation reactions of organics readily promoted anhydrous chemistry and condensation reactions, without requiring any additive, catalyst, or other promoting agent under mild heating conditions. We also present a comparative study of the release of P from various prebiotically relevant phosphate minerals and phosphite salts (e.g., vivianite, apatite, and phosphites of iron and calcium) into formamide and UAFW. These results have direct implications for the origin of biological P compounds from non-aqueous solvents of prebiotic provenance.

9.
J Med Chem ; 66(18): 13319-13331, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37706450

RESUMEN

The HIV-1 epidemic has significant social and economic implications for public health. Developing new antivirus drugs to eradicate drug resistance is still urgently needed. Herein, we demonstrated that sulfonyl-γ-AApeptides could be designed to mimic MTSC22EK, one potent HIV fusion inhibitor derived from CHR. The best two sequences revealed comparable activity to MTSC22EK in an authentic HIV-1 infection assay and exhibited broad-spectrum anti-HIV-1 activity to many HIV-1 clinical isolates. Furthermore, sulfonyl-γ-AApeptides show remarkable resistance to proteolysis and favorable permeability in PAMPA-GIT and PAMPA-BBB assays, suggesting that both sequences could control HIV-1 within the central nervous system and possess promising oral bioavailability. Mechanistic investigations suggest that these sulfonyl-γ-AApeptides function by mimicking the CHR of gp41 and tightly bind with NHR, thereby inhibiting the formation of the 6-HB structure necessary for HIV-1 fusion. Overall, our results suggest that sulfonyl-γ-AApeptides represent a new generation of anti-HIV-1 fusion inhibitors. Moreover, this design strategy could be adopted to modulate many of the PPIs.

10.
ACS Cent Sci ; 9(5): 1046-1058, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37252367

RESUMEN

Neutralizing antibodies and fusion inhibitory peptides have the potential required to combat the global pandemic caused by SARS-CoV-2 and its variants. However, the lack of oral bioavailability and enzymatic susceptibility limited their application, necessitating the development of novel pan-CoV fusion inhibitors. Herein we report a series of helical peptidomimetics, d-sulfonyl-γ-AApeptides, which effectively mimic the key residues of heptad repeat 2 and interact with heptad repeat 1 in the SARS-CoV-2 S2 subunit, resulting in inhibiting SARS-CoV-2 spike protein-mediated fusion between virus and cell membranes. The leads also displayed broad-spectrum inhibitory activity against a panel of other human CoVs and showed strong potency in vitro and in vivo. Meanwhile, they also demonstrated complete resistance to proteolytic enzymes or human sera and exhibited extremely long half-life in vivo and highly promising oral bioavailability, delineating their potential as pan-CoV fusion inhibitors with the potential to combat SARS-CoV-2 and its variants.

11.
ACS Chem Biol ; 18(5): 1124-1135, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37144894

RESUMEN

The accumulation and aggregation of the microtubule-associated protein tau (tau) into intracellular neuronal tangles are a hallmark of a range of progressive neurodegenerative tauopathies, including Alzheimer's disease (AD), frontotemporal dementia, Pick's disease, and progressive supranuclear palsy. The aberrant phosphorylation of tau is associated with tau aggregates in AD. Members of the heat shock protein 70 kDa (Hsp70) family of chaperones bind directly to tau and modulate tau clearance and aggregation. Small molecules that inhibit the Hsp70 family of chaperones have been shown to reduce the accumulation of tau, including phosphorylated tau. Here, eight analogs of the rhodacyanine inhibitor, JG-98, were synthesized and evaluated. Like JG-98, many of the compounds inhibited ATPase activity of the cytosolic heat shock cognate 70 protein (Hsc70) and reduced total, aggregated, and phosphorylated tau accumulation in cultured cells. Three compounds, representing divergent clogP values, were evaluated for in vivo blood-brain barrier penetration and tau reduction in an ex vivo brain slice model. AL69, the compound with the lowest clogP and the lowest membrane retention in a parallel artificial membrane permeability assay (PAMPA), reduced phosphorylated tau accumulation. Our results suggest that benzothiazole substitutions of JG-98 that increase hydrophilicity may increase the efficacy of these Hsp70 inhibitors to reduce phosphorylated tau.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Benzotiazoles/farmacología , Proteínas HSP70 de Choque Térmico , Chaperonas Moleculares , Proteínas tau/metabolismo , Tauopatías/metabolismo
12.
Cells ; 11(21)2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36359884

RESUMEN

Human topoisomerase 1B regulates the topological state of supercoiled DNA enabling all fundamental cell processes. This enzyme, which is the unique molecular target of the natural anticancer compound camptothecin, acts by nicking one DNA strand and forming a transient protein-DNA covalent complex. The interaction of human topoisomerase 1B and dimethylmyricacene, a compound prepared semisynthetically from myricanol extracted from Myrica cerifera root bark, was investigated using enzymatic activity assays and molecular docking procedures. Dimethylmyricacene was shown to inhibit both the cleavage and the religation steps of the enzymatic reaction, and cell viability of A-253, FaDu, MCF-7, HeLa and HCT-116 tumor cell lines.


Asunto(s)
Camptotecina , ADN-Topoisomerasas de Tipo I , Humanos , ADN-Topoisomerasas de Tipo I/genética , ADN-Topoisomerasas de Tipo I/metabolismo , Camptotecina/farmacología , Simulación del Acoplamiento Molecular , ADN/metabolismo
13.
Cell Discov ; 8(1): 88, 2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36075899

RESUMEN

The receptor-binding domain (RBD) in S1 subunit and heptad repeat 1 (HR1) domain in S2 subunit of SARS-CoV-2 spike (S) protein are the targets of neutralizing antibodies (nAbs) and pan-coronavirus (CoV) fusion inhibitory peptides, respectively. However, neither nAb- nor peptide-based drugs can be used orally. In this study, we screened a one-bead-two-compound (OBTC) cyclic γ-AApeptide library against SARS-CoV-2 S protein and identified a hit: S-20 with potent membrane fusion inhibitory activity, but moderate selectivity index (SI). After modification, one derivative, S-20-1, exhibited improved fusion inhibitory activity and SI (>1000). S-20-1 could effectively inhibit infection by pseudotyped and authentic SARS-CoV-2 and pseudotyped variants of concern (VOCs), including B.1.617.2 (Delta) and B.1.1.529 (Omicron), as well as MERS-CoV, SARS-CoV, HCoV-OC43, HCoV-229E, and HCoV-NL63. It could also inhibit infection of a pseudotyped SARS-related coronavirus WIV1 (SARSr-CoV-WIV1) from bats. Intranasal application of S-20-1 to mice before or after challenge with HCoV-OC43 or SARS-CoV-2 provided significant protection from infection. Importantly, S-20-1 was highly resistant to proteolytic degradation, had long half-life, and possessed favorable oral bioavailability. Mechanistic studies suggest that S-20-1 binds with high affinity to RBD in S1 and HR1 domain in S2 of SARS-CoV-2 S protein. Thus, with its pan-CoV fusion and entry inhibitory activity by targeting two sites in S protein, desirable half-life, and promising oral bioavailability, S-20-1 is a potential candidate for further development as a novel therapeutic and prophylactic drug against infection by SARS-CoV-2 and its variants, as well as future emerging and reemerging CoVs.

14.
J Med Chem ; 64(15): 11219-11228, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34297567

RESUMEN

It is very promising to target the extracellular domain of epidermal growth factor receptor (EGFR) for developing novel and selective anticancer therapies. Herein, we report the discovery of a novel small molecule, M-2-5, from a one-bead-two-compound (OBTC) cyclic γ-AApeptide library. The molecule was found to bind tightly to the extracellular domain of EGFR. Intriguingly, this molecule could also effectively antagonize EGF-stimulated EGFR phosphorylation and downstream signal transduction. Furthermore, together with its remarkable resistance to proteolytic degradation, M-2-5 was shown to effectively inhibit cell proliferation and migration in vitro and suppresses the growth of tumor in the A549 xenograft model in vivo, highlighting its potential therapeutic application for cancer treatment.


Asunto(s)
Descubrimiento de Drogas , Peptidomiméticos/farmacología , Relación Dosis-Respuesta a Droga , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Ligandos , Estructura Molecular , Peptidomiméticos/síntesis química , Peptidomiméticos/química , Relación Estructura-Actividad
15.
J Nat Prod ; 73(3): 365-72, 2010 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-20102170

RESUMEN

The focus of this study is on the bastadin class of bromotyrosine derivatives, commonly isolated from Ianthella marine sponges, and is the first report on the secondary metabolites from Ianthella cf. reticulata. Two new bastadins were isolated, (E,Z)-bastadin 19 (1a), a diastereoisomer of the known (E,E)-bastadin 19 (1b), and dioxepine bastadin 3 (2), an unusual dibenzo-1,3-dioxepine. A bastadin NMR database was created and assisted in the structure determination of 1b and 2 and the rapid dereplication of 10 other known compounds including bastadins 2-9 (3-10), 13 (11), and 19 (1a). The geometry of the 2-(hydroxyimino)-N-alkylamide chains, a chemical feature present in all bastadins, was further probed, and new insights regarding the natural oxime configuration are discussed. Bastadins possessing (E,Z)-, (Z,E)-, or (E,E)-dioxime configurations could be artifacts of isolation or storage in solution. Therefore, this point was explored by photochemical and thermal isomerization studies, as well as molecular mechanics calculations. Bastadins 13 (11) and 19 (1a) exhibited moderate inhibition against Trypanosoma brucei, and bastadin 4 (5) was cytotoxic to HCT-116 colon cancer cells.


Asunto(s)
Éteres Difenilos Halogenados/aislamiento & purificación , Poríferos/química , Trypanosoma brucei brucei/efectos de los fármacos , Animales , Ensayos de Selección de Medicamentos Antitumorales , Células HCT116 , Éteres Difenilos Halogenados/química , Éteres Difenilos Halogenados/farmacología , Humanos , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Oximas/química , Pruebas de Sensibilidad Parasitaria , Estereoisomerismo
16.
J Nat Prod ; 72(3): 443-9, 2009 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-19323567

RESUMEN

The overexpression of the Mcl-1 protein in cancerous cells results in the sequestering of Bak, a key component in the regulation of normal cell apoptosis. Our investigation of the ability of marine-derived small-molecule natural products to inhibit this protein-protein interaction led to the isolation of several bioactive oxy-polyhalogenated diphenyl ethers. A semipure extract, previously obtained from Dysidea (Lamellodysidea) herbacea and preserved in our repository, along with an untouched Dysidea granulosa marine sponge afforded 13 distinct oxy-polyhalogenated diphenyl ethers. Among these isolates were four new compounds, 5, 6, 10, and 12. The structure elucidation of these molecules was complicated by the plethora of structural variants that exist in the literature. During dereplication, we established a systematic method for analyzing this class of compounds. The strategy is governed by trends in the (1)H and (13)C NMR shifts of the aromatic rings, and the success of the strategy was checked by X-ray crystal structure analysis.


Asunto(s)
Antineoplásicos , Dysidea/química , Éteres Difenilos Halogenados , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Animales , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Cristalografía por Rayos X , Ensayos de Selección de Medicamentos Antitumorales , Éteres Difenilos Halogenados/química , Éteres Difenilos Halogenados/aislamiento & purificación , Éteres Difenilos Halogenados/farmacología , Conformación Molecular , Estructura Molecular , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Resonancia Magnética Nuclear Biomolecular , Proteínas Proto-Oncogénicas c-bcl-2/efectos de los fármacos
17.
ACS Chem Biol ; 10(4): 1099-109, 2015 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-25588114

RESUMEN

We previously discovered that one specific scalemic preparation of myricanol (1), a constituent of Myrica cerifera (bayberry/southern wax myrtle) root bark, could lower the levels of the microtubule-associated protein tau (MAPT). The significance is that tau accumulates in a number of neurodegenerative diseases, the most common being Alzheimer's disease (AD). Herein, a new synthetic route to prepare myricanol using a suitable boronic acid pinacol ester intermediate is reported. An X-ray crystal structure of the isolated myricanol (1) was obtained and showed a co-crystal consisting of (+)-aR,11S-myricanol (2) and (-)-aS,11R-myricanol (3) coformers. Surprisingly, 3, obtained from chiral separation from 1, reduced tau levels in both cultured cells and ex vivo brain slices from a mouse model of tauopathy at reasonable mid-to-low micromolar potency, whereas 2 did not. SILAC proteomics and cell assays revealed that 3 promoted tau degradation through an autophagic mechanism, which was in contrast to that of other tau-lowering compounds previously identified by our group. During the course of structure-activity relationship (SAR) development, we prepared compound 13 by acid-catalyzed dehydration of 1. 13 had undergone an unexpected structural rearrangement through the isomyricanol substitution pattern (e.g., 16), as verified by X-ray structural analysis. Compound 13 displayed robust tau-lowering activity, and, importantly, its enantiomers reduced tau levels similarly. Therefore, the semisynthetic analogue 13 provides a foundation for further development as a tau-lowering agent without its SAR being based on chirality.


Asunto(s)
Diarilheptanoides/química , Bibliotecas de Moléculas Pequeñas/farmacología , Proteínas tau/metabolismo , Animales , Autofagia , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Técnicas de Química Sintética , Diarilheptanoides/aislamiento & purificación , Diarilheptanoides/farmacología , Epítopos/metabolismo , Células HEK293/efectos de los fármacos , Humanos , Masculino , Ratones Transgénicos , Estructura Molecular , Terapia Molecular Dirigida , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Estereoisomerismo , Tauopatías/tratamiento farmacológico , Tauopatías/genética , Tauopatías/metabolismo , Proteínas tau/genética , Proteínas tau/inmunología
18.
Future Med Chem ; 4(13): 1751-61, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22924511

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder and the most common form of dementia, affecting more than 5.4 million people in the USA. Although the cause of AD is not well understood, the cholinergic, amyloid and tau hypotheses were proposed to explain its development. Drug discovery for AD based on the cholinergic and amyloid theories have not been effective. In this article we summarize tau-based natural products as AD therapeutics from a variety of biological sources, including the anti-amyloid agent curcumin, isolated from turmeric, the microtubule stabilizer paclitaxel, from the Pacific Yew Taxus brevifolia, and the Streptomyces-derived Hsp90 inhibitor, geldanamycin. The overlooked approach of clearing tau aggregation will most likely be the next objective for AD drug discovery.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Productos Biológicos/farmacología , Descubrimiento de Drogas/métodos , Proteínas tau/metabolismo , Animales , Productos Biológicos/química , Productos Biológicos/uso terapéutico , Humanos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda