Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Molecules ; 24(22)2019 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-31717646

RESUMEN

A method has been developed for the separation and quantification of terpenic compounds typically used as markers in the chemical characterization of resins based on capillary liquid chromatography coupled to UV detection. The sample treatment, separation and detection conditions have been optimized in order to analyze compounds of different polarities and volatilities in a single chromatographic run. The monoterpene limonene and the triterpenes lupeol, lupenone, ß-amyrin, and α-amyrin have been selected as model compounds. The proposed method provides linear responses and precision (expressed as relative standard deviations) of 0.6% to 17%, within the 0.5-10.0 µg mL-1 concentration interval; the limits of detection (LODs) and quantification (LOQs) were 0.1-0.25 µg mL-1 and 0.4-0.8 µg mL-1, respectively. The method has been applied to the quantification of the target compounds in microsamples. The reliability of the proposed conditions has been tested by analyzing three resins, white copal, copal in tears, and ocote tree resin. Percentages of the triterpenes in the range 0.010% to 0.16% were measured using sample amounts of 10-15 mg, whereas the most abundant compound limonene (≥0.93%) could be determined using 1 mg portions of the resins. The proposed method can be considered complementary to existing protocols aimed at establishing the chemical fingerprint of these kinds of samples.


Asunto(s)
Cromatografía Liquida , Resinas de Plantas/química , Terpenos/análisis , Terpenos/química , Cromatografía Liquida/métodos , Límite de Detección , Estructura Molecular
2.
Anal Chem ; 86(3): 1347-51, 2014 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-24428122

RESUMEN

A simple, fast, and highly selective and sensitive colorimetric assay to detect nanomolar levels of spermine in human urine (healthy donors, cancer patients) is reported. This assay is based on the absence of a competitive organic capping on the gold nanoparticles together with the high affinity of the amine groups of the analyte for the nanoparticle surface.


Asunto(s)
Colorimetría/métodos , Espermina/orina , Urinálisis/métodos , Biomarcadores/orina , Oro/química , Humanos , Límite de Detección , Nanopartículas del Metal/química
3.
Anal Bioanal Chem ; 406(8): 2211-5, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24105458

RESUMEN

This work demonstrates the application of silica supported Fe3O4 nanoparticles as sorbent phase for magnetic solid-phase extraction (MSPE) and magnetic on-line in-tube solid-phase microextraction (Magnetic-IT-SPME) combined with capillary liquid chromatography-diode array detection (CapLC-DAD) to determine organophosphorous compounds (OPs) at trace level. In MSPE, magnetism is used as separation tool while in Magnetic-IT-SPME, the application of an external magnetic field gave rise to a significant improvement of the adsorption of OPs on the sorbent phase. Extraction efficiency, analysis time, reproducibility and sensitivity have been compared. This work showed that Magnetic-IT-SPME can be extended to OPs with successful results in terms of simplicity, speed, extraction efficiency and limit of detection. Finally, wastewater samples were analysed to determine OPs at nanograms per litre.


Asunto(s)
Compuestos Organofosforados/química , Dióxido de Silicio/química , Extracción en Fase Sólida/métodos , Microextracción en Fase Sólida/métodos , Contaminantes Químicos del Agua/química , Nanopartículas de Magnetita , Compuestos Organofosforados/aislamiento & purificación , Extracción en Fase Sólida/instrumentación , Microextracción en Fase Sólida/instrumentación , Aguas Residuales/química , Contaminantes Químicos del Agua/aislamiento & purificación
4.
J Chromatogr A ; 1730: 465101, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38941795

RESUMEN

The greater and more widespread use of chemicals, either from industry or daily use, is leading to an increase in the discharge of these substances into the environment. Some of these are known to be hazardous to humans and the environment and are regulated, but there is a large and increasing number of substances which pose a potential risk even at low concentration and are not controlled. In this context, new techniques and methodologies are being developed to deal with this concern. Miniaturized liquid chromatography (LC) emerges as a greener and more sensitive alternative to conventional LC. Furthermore, advances in instrument miniaturization have made possible the development of portable LC instrumentation which may become a promising tool for in-situ monitoring. This work reviews the environmental applications of miniaturized LC over the last 15 years and discusses the different instrumentation, including off- and on-line pretreatment techniques, chromatographic conditions, and contributions to the environmental knowledge.


Asunto(s)
Miniaturización , Cromatografía Liquida/métodos , Monitoreo del Ambiente/métodos , Contaminantes Ambientales/análisis
5.
Food Chem ; 448: 139025, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38522293

RESUMEN

Monitoring of the accidental presence of gluten (Glu), resulting from cross-contamination, is imperative in different industries, in particular food industry. The objective of this study was the development of an analytical platform utilizing thin-layer chromatography (TLC) with colorimetric read-out for making binary (yes/no) decisions on surfaces and/or point of these industries. The composition of the extractive phase was optimized with commercial products used in cleaning processing lines. Subsequently, an exploration of TLC separation and detection was undertaken. CN-modified nanosilica plates and 30:70 acetonitrile:water were used to achieve a selective signal for Glu residues. The study of the detection performance showed that both spectroscopic measurement and image analysis were resulted in satisfactory results for quantitate analysis (RSD = 5 %, LOD = 0.12 mg). The practical application of the proposed methodology on surfaces of the food processing lines. This work demonstrated the operational feasibility in detecting gluten cross-contaminations within the food processing industry.


Asunto(s)
Colorimetría , Contaminación de Alimentos , Glútenes , Contaminación de Alimentos/análisis , Glútenes/análisis , Glútenes/química , Colorimetría/métodos , Cromatografía en Capa Delgada/métodos , Industria de Alimentos
6.
Sci Total Environ ; 926: 172060, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38552986

RESUMEN

This research addresses the issues related with treatment and valorization of brines and nitrate decontamination of surface and ground waters. The objective was to approximate to zero liquid discharge (ZLD) minimizing the environmental impact of brines of an electrodialysis reversal water treatment plant (EDRWTP) as an example. The innovative in flow process was developed from lab to pre-industrial scale and joined several main concepts: ion-exchange equilibrium for softening or demineralization of brines; reversed osmosis to recover suitable water and to enrich the waste in nitrate for efficient electrochemical reduction of NO3- to N2; valorization of subproducts by direct use or by precipitation; and assessment of the whole process by measuring in-line several parameters. The achieved softening was around 98 % and the recovered water from this current by reversed osmosis was 75 %. The brine of this step (25 %) contained around 1500 mg/L of nitrate and it was treated by electrochemical reduction with a Bi/Sn cathode providing a gas current of 60 % of initial nitrate reduced to N2, O2, H2O, NH3 and at least 97 % of H2. The aqueous current contained around 40 % of initial nitrate as ammonium and nitrite lower than 50 and 5 mg/L, respectively. Hypochlorite was added to this last current for oxidizing ammonium and nitrite to N2 and nitrate, respectively, being nitrate and ammonium lower than 50 and 5 mg/L, respectively. After the obtained water was demineralized and conducted to the EDRWTP inlet. The recovery of insoluble salts as calcium carbonate, reuse of saline solutions for the regeneration of process resins and the potential use of hydrogen generated as a by-product during the electrochemical reduction are other possible utilities.

7.
Anal Chem ; 85(21): 10013-6, 2013 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-24131247

RESUMEN

Silver ions (Ag(+)) can be quantified in situ in the presence of AgNPs by using a colorimetric sensing probe (3,3',5,5'-tetramethylbenzidine). Interestingly, it also enables detection of the Ag(+) adsorbed on the AgNP surface. This is relevant to design new methods to make AgNPs while ensuring the total reduction of Ag(+).

8.
J Chromatogr A ; 1705: 464216, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37480726

RESUMEN

A micro-solid phase extraction (micro-SPE) device packed with a C18 sorbent (10 mg) has been developed for the enrichment and purification of organic water pollutants prior to their analysis using a portable liquid chromatograph with a dual UV detector. To this end, the sorbent was immobilized at the inlet of a 4 mm syringe filter (0.20 µm), which was modified to reduce its internal volume. The filter was coupled to the needle of the chromatograph. After loading the sample and cleaning the sorbent for analyte purification, the device was installed into the injection port of the chromatograph, and the target compounds were desorbed and transferred directly to the chromatographic column with a small volume of organic solvent. Under optimized conditions, sample volumes as large as 50 mL could be processed with the micro-SPE device, while the analytes were desorbed with only 60 µL of methanol. As a result, efficient preconcentration could be reached, as demonstrated for different water contaminants, namely aclonifen, bifenox, tritosulfuron, triflusulfuron-methyl and caffeine. The proposed micro-SPE device was applied to the analysis of different types of water (river, well, sea, ditch and wastewater). The recoveries of the target compounds in samples ranged from 76 % to 109 %, which allowed their detection at low to sub µg/L levels. All operations were carried out manually, and thus, no additional laboratory instruments such as centrifuges, stirrers or evaporators were required. This proof-of-concept study shows that the proposed micro-SPE approach can be considered a reliable and effective option for the on-site analysis of pollutants in environmental water samples by portable liquid chromatography.


Asunto(s)
Extracción en Fase Sólida , Contaminantes Químicos del Agua , Extracción en Fase Sólida/métodos , Cromatografía Liquida , Agua/química , Solventes/análisis , Cromatografía Líquida de Alta Presión/métodos , Contaminantes Químicos del Agua/análisis
9.
Chemosphere ; 336: 139238, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37330060

RESUMEN

The degradation of the diphenyl-ether herbicides aclonifen (ACL) and bifenox (BF) in water samples has been studied under different laboratory conditions, using in-tube solid-phase microextraction (IT-SPME) coupled to capillary liquid chromatography (capLC). The working conditions were selected in order to detect also bifenox acid (BFA), a compound formed as a result of the hydroxylation of BF. Samples (4 mL) were processed without any previous treatment, which allowed the detection of the herbicides at low ppt levels. The effects of temperature, light and pH on the degradation of ACL and BF have been tested using standard solutions prepared in nanopure water. The effect of the sample matrix has been evaluated by analysing different environmental waters spiked with the herbicides, namely ditch water, river water and seawater. The kinetics of the degradation have been studied and the half-life times (t1/2) have been calculated. The results obtained have demonstrated that the sample matrix is the most important parameter affecting the degradation of the tested herbicides. The degradation of both ACL and BF was much faster in ditch and river water samples, where t1/2 values of only a few days were observed. However, both compounds showed a better stability in seawater samples, where they can persist for several months. In all matrices ACL was found to be more stable than BF. In samples where BF had been substantially degraded, BFA was also detected, although the stability of this compound was also limited. Other degradation products have been detected along the study.


Asunto(s)
Herbicidas , Contaminantes Químicos del Agua , Herbicidas/química , Éteres Fenílicos/análisis , Agua/análisis , Contaminantes Químicos del Agua/análisis
10.
Sci Total Environ ; 864: 161131, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36566864

RESUMEN

In this work, we have studied the main species involved in determining total dissolved nitrogen (TDN) in water samples for accommodating a variety of quantitation methodologies to portable instruments and with the goal to achieve in situ analysis. The rise of water eutrophication is becoming an ecological problem in the world and TDN contributes markedly to this. Traditionally the several forms of DN are measured in the laboratory using conventional instrumentation from grab samples, but their analysis in place and in real time is a current demand. Inorganic nitrogen: NO3-, NO2- and NH4+, and organic nitrogen, such as amino nitrogen were tested here. For nitrate that presents native UV absorption suitable for direct water analysis, a portable optical fiber probe was compared with benchtop equipment and an in place analyzer. For nitrate, nitrite and ammonium, in situ solid devices that deliver reagents needed were tested and water color was measured by a smartphone coupled with a miniaturized optical fiber spectrometer and a miniaturized spectrometer or from images obtained and their RGB components. Amino nitrogen of some aromatic aminoacids with native fluorescence was followed by a portable optical fiber probe. Organic amino nitrogen and ammonium were determined by a portable luminometer and luminol supported in a measurement tube. Moreover, a portable miniaturized liquid chromatograph was shown suitable for monitoring priority nitrogen environmental pollutants. All options provided suitable results in comparison with lab estimations and were useful for evaluating if the legislation is fulfilled for the variety of tested waters. A discussion about the several portable options proposed for in place analysis, in function of the legislated determinations needed for each type of water was carried out.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda