Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Infect Immun ; 89(12): e0034821, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34543122

RESUMEN

Helicobacter pylori VacA is a secreted toxin that assembles into water-soluble oligomeric structures and forms anion-selective membrane channels. Acidification of purified VacA enhances its activity in cell culture assays. Sites of protomer-protomer contact within VacA oligomers have been identified by cryoelectron microscopy, and in the current study, we validated several of these interactions by chemical cross-linking and mass spectrometry. We then mutated amino acids at these contact sites and analyzed the effects of the alterations on VacA oligomerization and activity. VacA proteins with amino acid charge reversals at interprotomer contact sites retained the capacity to assemble into water-soluble oligomers and retained cell-vacuolating activity. Introduction of paired cysteine substitutions at these sites resulted in formation of disulfide bonds between adjacent protomers. Negative-stain electron microscopy and single-particle two-dimensional class analysis revealed that wild-type VacA oligomers disassemble when exposed to acidic pH, whereas the mutant proteins with paired cysteine substitutions retain an oligomeric state at acidic pH. Acid-activated wild-type VacA caused vacuolation of cultured cells, whereas acid-activated mutant proteins with paired cysteine substitutions lacked cell-vacuolating activity. Treatment of these mutant proteins with both low pH and a reducing agent resulted in VacA binding to cells, VacA internalization, and cell vacuolation. Internalization of a nonoligomerizing mutant form of VacA by host cells was detected without a requirement for acid activation. Collectively, these results enhance our understanding of the molecular interactions required for VacA oligomerization and support a model in which toxin activity depends on interactions of monomeric VacA with host cells.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Conformación Proteica , Multimerización de Proteína , Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Relación Estructura-Actividad
2.
Infect Immun ; 89(4)2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33526561

RESUMEN

Helicobacter pylori encounters a wide range of pH within the human stomach. In a comparison of H. pylori cultured in vitro under neutral or acidic conditions, about 15% of genes are differentially expressed, and corresponding changes are detectable for many of the encoded proteins. The ArsRS two-component system (TCS), comprised of the sensor kinase ArsS and its cognate response regulator ArsR, has an important role in mediating pH-responsive changes in H. pylori gene expression. In this study, we sought to delineate the pH-responsive ArsRS regulon and further define the role of ArsR in pH-responsive gene expression. We compared H. pylori strains containing an intact ArsRS system with an arsS null mutant or strains containing site-specific mutations of a conserved aspartate residue (D52) in ArsR, which is phosphorylated in response to signals relayed by the cognate sensor kinase ArsS. We identified 178 genes that were pH-responsive in strains containing an intact ArsRS system but not in ΔarsS or arsR mutants. These constituents of the pH-responsive ArsRS regulon include genes involved in acid acclimatization (ureAB, amidases), oxidative stress responses (katA, sodB), transcriptional regulation related to iron or nickel homeostasis (fur, nikR), and genes encoding outer membrane proteins (including sabA, alpA, alpB, hopD [labA], and horA). When comparing H. pylori strains containing an intact ArsRS TCS with arsRS mutants, each cultured at neutral pH, relatively few genes are differentially expressed. Collectively, these data suggest that ArsRS-mediated gene regulation has an important role in H. pylori adaptation to changing pH conditions.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Helicobacter pylori/fisiología , Concentración de Iones de Hidrógeno , Elementos de Respuesta , Transactivadores/metabolismo , Biología Computacional/métodos , Perfilación de la Expresión Génica , Humanos , Mutación , Proteoma , Proteómica/métodos , Transcripción Genética
3.
Infect Immun ; 88(6)2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32284370

RESUMEN

Helicobacter pylori colonizes the gastric mucosa and secretes a pore-forming toxin (VacA). Two main types of VacA, m1 and m2, can be distinguished by phylogenetic analysis. Type m1 forms of VacA have been extensively studied, but there has been relatively little study of m2 forms. In this study, we generated H. pylori strains producing chimeric proteins in which VacA m1 segments of a parental strain were replaced by corresponding m2 sequences. In comparison to the parental m1 VacA protein, a chimeric protein (designated m2/m1) containing m2 sequences in the N-terminal portion of the m region was less potent in causing vacuolation of HeLa cells, AGS gastric cells, and AZ-521 duodenal cells and had reduced capacity to cause membrane depolarization or death of AZ-521 cells. Consistent with the observed differences in activity, the chimeric m2/m1 VacA protein bound to cells at reduced levels compared to the binding levels of the parental m1 protein. The presence of two strain-specific insertions or deletions within or adjacent to the m region did not influence toxin activity. Experiments with human gastric organoids grown as monolayers indicated that m1 and m2/m1 forms of VacA had similar cell-vacuolating activities. Interestingly, both forms of VacA bound preferentially to the basolateral surface of organoid monolayers and caused increased cell vacuolation when interacting with the basolateral surface compared to the apical surface. These data provide insights into functional correlates of sequence variation in the VacA midregion (m region).


Asunto(s)
Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Variación Genética , Infecciones por Helicobacter/microbiología , Helicobacter pylori/fisiología , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Humanos , Dominios Proteicos , Multimerización de Proteína , Transporte de Proteínas , Vacuolas/metabolismo , Vacuolas/ultraestructura
4.
Infect Immun ; 87(4)2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30692181

RESUMEN

Helicobacter pylori VacA is a secreted pore-forming toxin that induces cell vacuolation in vitro and contributes to the pathogenesis of gastric cancer and peptic ulcer disease. We observed that purified VacA has relatively little effect on the viability of AGS gastric epithelial cells, but the presence of exogenous weak bases such as ammonium chloride (NH4Cl) enhances the susceptibility of these cells to VacA-induced vacuolation and cell death. Therefore, we tested the hypothesis that NH4Cl augments VacA toxicity by altering the intracellular trafficking of VacA or inhibiting intracellular VacA degradation. We observed VacA colocalization with LAMP1- and LC3-positive vesicles in both the presence and absence of NH4Cl, indicating that NH4Cl does not alter VacA trafficking to lysosomes or autophagosomes. Conversely, we found that supplemental NH4Cl significantly increases the intracellular stability of VacA. By conducting experiments using chemical inhibitors, stable ATG5 knockdown cell lines, and ATG16L1 knockout cells (generated using CRISPR/Cas9), we show that VacA degradation is independent of autophagy and proteasome activity but dependent on lysosomal acidification. We conclude that weak bases like ammonia, potentially generated during H. pylori infection by urease and other enzymes, enhance VacA toxicity by inhibiting toxin degradation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Células Epiteliales/citología , Mucosa Gástrica/citología , Infecciones por Helicobacter/microbiología , Helicobacter pylori/metabolismo , Autofagia/efectos de los fármacos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/toxicidad , Línea Celular , Supervivencia Celular , Células Epiteliales/efectos de los fármacos , Células Epiteliales/microbiología , Mucosa Gástrica/efectos de los fármacos , Mucosa Gástrica/microbiología , Helicobacter pylori/química , Helicobacter pylori/genética , Humanos , Concentración de Iones de Hidrógeno , Muramidasa/química , Muramidasa/metabolismo , Estabilidad Proteica , Transporte de Proteínas , Proteolisis
5.
Infect Immun ; 86(5)2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29531133

RESUMEN

Helicobacter pylori, a Gram-negative bacterium, is a well-known risk factor for gastric cancer. H. pylori vacuolating cytotoxin A (VacA) is a secreted pore-forming toxin that induces a wide range of cellular responses. Like many other bacterial toxins, VacA has been hypothesized to utilize lipid rafts to gain entry into host cells. Here, we used giant plasma membrane vesicles (GPMVs) as a model system to understand the preferential partitioning of VacA into lipid rafts. We show that a wild-type (WT) toxin predominantly associates with the raft phase. Acid activation of VacA enhances binding of the toxin to GPMVs but is not required for raft partitioning. VacA mutant proteins with alterations at the amino terminus (resulting in impaired membrane channel formation) and a nonoligomerizing VacA mutant protein retain the ability to preferentially associate with lipid rafts. Consistent with these results, the isolated VacA p55 domain was capable of binding to lipid rafts. We conclude that the affinity of VacA for rafts is independent of its capacity to oligomerize or form membrane channels.


Asunto(s)
Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Helicobacter pylori/metabolismo , Helicobacter pylori/patogenicidad , Microdominios de Membrana/metabolismo , Neoplasias Gástricas/patología , Vacuolas/metabolismo , Interacciones Huésped-Patógeno
6.
Infect Immun ; 84(9): 2662-70, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27382020

RESUMEN

Helicobacter pylori secretes a pore-forming VacA toxin that has structural features and activities substantially different from those of other known bacterial toxins. VacA can assemble into multiple types of water-soluble flower-shaped oligomeric structures, and most VacA activities are dependent on its capacity to oligomerize. The 88-kDa secreted VacA protein can undergo limited proteolysis to yield two domains, designated p33 and p55. The p33 domain is required for membrane channel formation and intracellular toxic activities, and the p55 domain has an important role in mediating VacA binding to cells. Previous studies showed that the p55 domain has a predominantly ß-helical structure, but no structural data are available for the p33 domain. We report here the purification and analysis of a nonoligomerizing mutant form of VacA secreted by H. pylori The nonoligomerizing 88-kDa mutant protein retains the capacity to enter host cells but lacks detectable toxic activity. Analysis of crystals formed by the monomeric protein reveals that the ß-helical structure of the p55 domain extends into the C-terminal portion of p33. Fitting the p88 structural model into an electron microscopy map of hexamers formed by wild-type VacA (predicted to be structurally similar to VacA membrane channels) reveals that p55 and the ß-helical segment of p33 localize to peripheral arms but do not occupy the central region of the hexamers. We propose that the amino-terminal portion of p33 is unstructured when VacA is in a monomeric form and that it undergoes a conformational change during oligomer assembly.


Asunto(s)
Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Helicobacter pylori/genética , Mutación/genética , Dominios Proteicos/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Línea Celular Tumoral , Células HeLa , Helicobacter pylori/metabolismo , Humanos , Canales Iónicos/genética , Canales Iónicos/metabolismo , Microscopía Electrónica/métodos
7.
J Mol Biol ; 436(4): 168432, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38161000

RESUMEN

Helicobacter pylori colonizes the stomach in about half of the human population, leading to an increased risk of peptic ulcer disease and gastric cancer. H. pylori secretes an 88 kDa VacA toxin that contributes to pathogenesis. VacA assembles into oligomeric complexes in solution and forms anion-selective channels in cell membranes. Cryo-electron microscopy (cryo-EM) analyses of VacA oligomers in solution provided insights into VacA oligomerization but failed to reveal the structure of the hydrophobic N-terminal region predicted to be a pore-forming domain. In this study, we incubated VacA with liposomes and used single particle cryo-EM to analyze detergent-extracted VacA oligomers. A 3D structure of detergent-solubilized VacA hexamers revealed the presence of six α-helices extending from the center of the oligomers, a feature not observed in previous studies of water-soluble VacA oligomers. Cryo-electron tomography analysis and 2D averages of VacA associated with liposomes confirmed that central regions of the membrane-associated VacA oligomers can insert into the lipid bilayer. However, insertion is heterogenous, with some membrane-associated oligomers appearing only partially inserted and others sitting on top of the bilayer. These studies indicate that VacA undergoes a conformational change when contacting the membrane and reveal an α-helical region positioned to extend into the membrane. Although the reported VacA 3D structure does not represent a selective anion channel, our combined single particle 3D analysis, cryo-electron tomography, and modeling allow us to propose a model for the structural organization of the VacA N-terminus in the context of a hexamer as it inserts into the membrane.


Asunto(s)
Proteínas Bacterianas , Helicobacter pylori , Toxinas Biológicas , Canales Aniónicos Dependientes del Voltaje , Humanos , Proteínas Bacterianas/química , Microscopía por Crioelectrón/métodos , Detergentes , Helicobacter pylori/química , Liposomas/química , Toxinas Biológicas/química , Canales Aniónicos Dependientes del Voltaje/química , Multimerización de Proteína
8.
mBio ; 11(3)2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32605987

RESUMEN

The Helicobacter pylori Cag type IV secretion system (T4SS) translocates the effector protein CagA and nonprotein bacterial constituents into host cells. In this study, we infected Mongolian gerbils with an H. pylori strain in which expression of the cagUT operon (required for Cag T4SS activity) is controlled by a TetR/tetO system. Transcript levels of cagU were significantly higher in gastric tissue from H. pylori-infected animals receiving doxycycline-containing chow (to derepress Cag T4SS activity) than in tissue from infected control animals receiving drug-free chow. At 3 months postinfection, infected animals receiving doxycycline had significantly increased gastric inflammation compared to infected control animals. Dysplasia (a premalignant histologic lesion) and/or invasive gastric adenocarcinoma were detected only in infected gerbils receiving doxycycline, not in infected control animals. We then conducted experiments in which Cag T4SS activity was derepressed during defined stages of infection. Continuous Cag T4SS activity throughout a 3-month time period resulted in higher rates of dysplasia and/or gastric cancer than observed when Cag T4SS activity was limited to early or late stages of infection. Cag T4SS activity for the initial 6 weeks of infection was sufficient for the development of gastric inflammation at the 3-month time point, with gastric cancer detected in a small proportion of animals. These experimental results, together with previous studies of cag mutant strains, provide strong evidence that Cag T4SS activity contributes to gastric carcinogenesis and help to define the stages of H. pylori infection during which Cag T4SS activity causes gastric alterations relevant for cancer pathogenesis.IMPORTANCE The "hit-and-run model" of carcinogenesis proposes that an infectious agent triggers carcinogenesis during initial stages of infection and that the ongoing presence of the infectious agent is not required for development of cancer. H. pylori infection and actions of CagA (an effector protein designated a bacterial oncoprotein, secreted by the Cag T4SS) are proposed to constitute a paradigm for hit-and-run carcinogenesis. In this study, we report the development of methods for controlling H. pylori Cag T4SS activity in vivo and demonstrate that Cag T4SS activity contributes to gastric carcinogenesis. We also show that Cag T4SS activity during an early stage of infection is sufficient to initiate a cascade of cellular alterations leading to gastric inflammation and gastric cancer at later time points.


Asunto(s)
Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Carcinogénesis , Helicobacter pylori/efectos de los fármacos , Neoplasias Gástricas/microbiología , Sistemas de Secreción Tipo IV/genética , Animales , Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Modelos Animales de Enfermedad , Doxiciclina/uso terapéutico , Gerbillinae/microbiología , Infecciones por Helicobacter/tratamiento farmacológico , Helicobacter pylori/patogenicidad , Masculino , Operón/genética , Sistemas de Secreción Tipo IV/antagonistas & inhibidores
9.
J Mol Biol ; 431(10): 1956-1965, 2019 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-30954575

RESUMEN

Helicobacter pylori colonizes the human stomach and contributes to the development of gastric cancer and peptic ulcer disease. H. pylori secretes a pore-forming toxin called vacuolating cytotoxin A (VacA), which contains two domains (p33 and p55) and assembles into oligomeric structures. Using single-particle cryo-electron microscopy, we have determined low-resolution structures of a VacA dodecamer and heptamer, as well as a 3.8-Å structure of the VacA hexamer. These analyses show that VacA p88 consists predominantly of a right-handed beta-helix that extends from the p55 domain into the p33 domain. We map the regions of p33 and p55 involved in hexamer assembly, model how interactions between protomers support heptamer formation, and identify surfaces of VacA that likely contact membrane. This work provides structural insights into the process of VacA oligomerization and identifies regions of VacA protomers that are predicted to contact the host cell surface during channel formation.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/ultraestructura , Helicobacter pylori/química , Microscopía por Crioelectrón/métodos , Infecciones por Helicobacter/microbiología , Helicobacter pylori/ultraestructura , Humanos , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína
10.
Elife ; 82019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31210639

RESUMEN

Bacterial type IV secretion systems (T4SSs) are molecular machines that can mediate interbacterial DNA transfer through conjugation and delivery of effector molecules into host cells. The Helicobacter pylori Cag T4SS translocates CagA, a bacterial oncoprotein, into gastric cells, contributing to gastric cancer pathogenesis. We report the structure of a membrane-spanning Cag T4SS assembly, which we describe as three sub-assemblies: a 14-fold symmetric outer membrane core complex (OMCC), 17-fold symmetric periplasmic ring complex (PRC), and central stalk. Features that differ markedly from those of prototypical T4SSs include an expanded OMCC and unexpected symmetry mismatch between the OMCC and PRC. This structure is one of the largest bacterial secretion system assemblies ever reported and illustrates the remarkable structural diversity that exists among bacterial T4SSs.


Asunto(s)
Helicobacter pylori/metabolismo , Sistemas de Secreción Tipo IV/química , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/ultraestructura , Modelos Moleculares , Sistemas de Secreción Tipo IV/ultraestructura
11.
PLoS One ; 6(1): e16329, 2011 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-21298013

RESUMEN

Mycobacteriophages are viruses that infect mycobacterial hosts such as Mycobacterium smegmatis and Mycobacterium tuberculosis. All mycobacteriophages characterized to date are dsDNA tailed phages, and have either siphoviral or myoviral morphotypes. However, their genetic diversity is considerable, and although sixty-two genomes have been sequenced and comparatively analyzed, these likely represent only a small portion of the diversity of the mycobacteriophage population at large. Here we report the isolation, sequencing and comparative genomic analysis of 18 new mycobacteriophages isolated from geographically distinct locations within the United States. Although no clear correlation between location and genome type can be discerned, these genomes expand our knowledge of mycobacteriophage diversity and enhance our understanding of the roles of mobile elements in viral evolution. Expansion of the number of mycobacteriophages grouped within Cluster A provides insights into the basis of immune specificity in these temperate phages, and we also describe a novel example of apparent immunity theft. The isolation and genomic analysis of bacteriophages by freshman college students provides an example of an authentic research experience for novice scientists.


Asunto(s)
Evolución Biológica , Variación Genética , Genoma Viral/genética , Micobacteriófagos/genética , Secuencia de Bases , ADN Viral/genética , Geografía , Micobacteriófagos/inmunología , Micobacteriófagos/aislamiento & purificación , Análisis de Secuencia de ADN , Estados Unidos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda