Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Neurosci ; 43(13): 2424-2438, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36859306

RESUMEN

Individuals on the autism spectrum often exhibit atypicality in their sensory perception, but the neural underpinnings of these perceptual differences remain incompletely understood. One proposed mechanism is an imbalance in higher-order feedback re-entrant inputs to early sensory cortices during sensory perception, leading to increased propensity to focus on local object features over global context. We explored this theory by measuring visual evoked potentials during contour integration as considerable work has revealed that these processes are largely driven by feedback inputs from higher-order ventral visual stream regions. We tested the hypothesis that autistic individuals would have attenuated evoked responses to illusory contours compared with neurotypical controls. Electrophysiology was acquired while 29 autistic and 31 neurotypical children (7-17 years old, inclusive of both males and females) passively viewed a random series of Kanizsa figure stimuli, each consisting of four inducers that were aligned either at random rotational angles or such that contour integration would form an illusory square. Autistic children demonstrated attenuated automatic contour integration over lateral occipital regions relative to neurotypical controls. The data are discussed in terms of the role of predictive feedback processes on perception of global stimulus features and the notion that weakened "priors" may play a role in the visual processing anomalies seen in autism.SIGNIFICANCE STATEMENT Children on the autism spectrum differ from typically developing children in many aspects of their processing of sensory stimuli. One proposed mechanism for these differences is an imbalance in higher-order feedback to primary sensory regions, leading to an increased focus on local object features rather than global context. However, systematic investigation of these feedback mechanisms remains limited. Using EEG and a visual illusion paradigm that is highly dependent on intact feedback processing, we demonstrated significant disruptions to visual feedback processing in children with autism. This provides much needed experimental evidence that advances our understanding of the contribution of feedback processing to visual perception in autism spectrum disorder.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Ilusiones , Masculino , Femenino , Humanos , Niño , Adolescente , Potenciales Evocados Visuales , Retroalimentación Sensorial , Retroalimentación , Percepción Visual/fisiología , Ilusiones/fisiología
2.
Neuroimage ; 282: 120391, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37757989

RESUMEN

There is considerable debate over how visual speech is processed in the absence of sound and whether neural activity supporting lipreading occurs in visual brain areas. Much of the ambiguity stems from a lack of behavioral grounding and neurophysiological analyses that cannot disentangle high-level linguistic and phonetic/energetic contributions from visual speech. To address this, we recorded EEG from human observers as they watched silent videos, half of which were novel and half of which were previously rehearsed with the accompanying audio. We modeled how the EEG responses to novel and rehearsed silent speech reflected the processing of low-level visual features (motion, lip movements) and a higher-level categorical representation of linguistic units, known as visemes. The ability of these visemes to account for the EEG - beyond the motion and lip movements - was significantly enhanced for rehearsed videos in a way that correlated with participants' trial-by-trial ability to lipread that speech. Source localization of viseme processing showed clear contributions from visual cortex, with no strong evidence for the involvement of auditory areas. We interpret this as support for the idea that the visual system produces its own specialized representation of speech that is (1) well-described by categorical linguistic features, (2) dissociable from lip movements, and (3) predictive of lipreading ability. We also suggest a reinterpretation of previous findings of auditory cortical activation during silent speech that is consistent with hierarchical accounts of visual and audiovisual speech perception.


Asunto(s)
Corteza Auditiva , Percepción del Habla , Humanos , Lectura de los Labios , Percepción del Habla/fisiología , Encéfalo/fisiología , Corteza Auditiva/fisiología , Fonética , Percepción Visual/fisiología
3.
Neuroimage ; 259: 119416, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35764208

RESUMEN

Re-entrant feedback processing is a key mechanism of visual object-recognition, especially under compromised viewing conditions where only sparse information is available and object features must be interpolated. Illusory Contour stimuli are commonly used in conjunction with Visual Evoked Potentials (VEP) to study these filling-in processes, with characteristic modulation of the VEP in the ∼100-150 ms timeframe associated with this re-entrant processing. Substantial inter-individual variability in timing and amplitude of feedback-related VEP modulation is observed, raising the question whether this variability might underlie inter-individual differences in the ability to form strong perceptual gestalts. Backward masking paradig ms have been used to study inter-individual variance in the ability to form robust object perceptions before processing of the mask interferes with object-recognition. Some individuals recognize objects when the time between target object and mask is extremely short, whereas others struggle to do so even at longer target-to-mask intervals. We asked whether timing and amplitude of feedback-related VEP modulations were associated with individual differences in resistance to backward masking. Participants (N=40) showed substantial performance variability in detecting Illusory Contours at intermediate target-to-mask intervals (67 ms and 117 ms), allowing us to use kmeans clustering to divide the population into four performance groups (poor, low-average, high-average, superior). There was a clear relationship between the amplitude (but not the timing) of feedback-related VEP modulation and Illusory Contour detection during backward masking. We conclude that individual differences in the strength of feedback processing in neurotypical humans lead to differences in the ability to quickly establish perceptual awareness of incomplete visual objects.


Asunto(s)
Percepción de Forma , Ilusiones , Adulto , Potenciales Evocados Visuales , Retroalimentación , Percepción de Forma/fisiología , Humanos , Reconocimiento Visual de Modelos/fisiología , Enmascaramiento Perceptual/fisiología , Estimulación Luminosa , Percepción Visual/fisiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda