Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Environ Manage ; 325(Pt A): 116455, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36242975

RESUMEN

The in-situ resource utilisation (ISRU), in terms of native rocky materials and astronaut wastes, is crucial in contests of soil-based space-farming. Nevertheless, extra-terrestrial soils are very different from Earth soils, lacking any form of organic carbon and associated macro and micronutrients. In this research, we aimed to study and modify two commercially available Lunar and Martian regolith simulants (LHS-1 from Exolith Lab and MMS-1 from Martian Garden) to make them an adequate medium for plant growth. Lettuce was chosen as reference crop to guide the discussion on the results obtained. To reach this main objective, we added to simulants a commercially available monogastric-based organic manure chosen as a substitute of a possible organic amendment produced onboard. The simulant/manure mixture rates were 100:0, 90:10, 70:30, 50:50; w:w. As expected, an approximately linear increase of total and bioavailable contents of macro (N, S, P, Ca, K, Mg) and micro (Fe, Mn, Cu, Zn) nutrients with increasing manure addition to simulants was observed. On the other hand, the very high pH of manure (pH, 9.02) along with its salinity (EC, 6.7 dS m-1) and sodicity (Na, 5.3 g kg-1), did not correct the already high pH of simulants (very high for LHS-1), but rather raised their soluble salt content and sodium amount on the exchange complex. In addition, an increase of toxic soluble aluminium and heavy elements (Pb, Ni, Cr, V) was observed, mainly in the strongly alkaline lunar simulant/manure mixtures. The addition of an organic source also produced a generalised improvement of water retention and hydraulic conductivity of both regolith simulants, in proportion to the percentage of manure addiction. For both situations, the best mixture ratio was 70:30. In terms of water retained, the LHS-1 mixtures benefited more than the MMS-1 ones by manure addition since water was held more in the "dry" (between -100 and -600 cm of matric potential head) than in the "humid" (between -25 and -100 cm of matric potential head) region of water retention. This would make LHS-1 mixtures more useful for cultivation of lettuce, at least in terms of physico-hydraulic properties. Nevertheless, the overall characterisation of the mixtures unveiled that MMS-1-based substrates can ensure better agronomic performances than LHS-1 ones, mainly due to lower pHs and higher nutrient availability; this divergent fertility was particularly evident at 90:10 simulant/manure rate and tend to be mitigated by increasing the levels of manure.


Asunto(s)
Estiércol , Marte , Suelo/química , Medio Ambiente Extraterrestre , Lactuca , Agua
2.
J Environ Manage ; 279: 111634, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33213991

RESUMEN

The risk assessment of phosphate mining/processing industrial activities on the environment and human health is crucial to properly manage and minimize the risks over time. In this work, we studied the inhalation and dermal bioaccessibility of potentially toxic metals (PTM) in different particle-size fractions of urban soil, sediments and tailings from Gafsa-Metlaoui phosphate mining area, to assess afterwards the non-carcinogenic (NCR) and carcinogenic (CR) risks for the health of local citizens and workers constantly exposed to airborne particulate matter (PM) originating from these sources of contamination. Samples were separated in particle-size fractions by centrifugation and consecutive cycles of sedimentation and decanting. The pseudo-total concentrations and bioaccessible fractions of PTM were extracted by aqua regia and in vitro bioaccessibility tests, respectively. Both sediments and tailings showed higher-than-background concentrations of PTM (mainly Cd, Zn and Cr), with a tendency to accumulate these metals in fine particles (<10 µm). In urban soil, only Cd was above the background concentration. The bioaccessibility of PTM via inhalation was significantly higher in artificial lysosomal fluid (ALF) than in simulated epithelial lung fluid (SELF): basically, Cd was the most bioaccessible metal (relative bioaccessibility up to 80%), followed by the medium-to-high bioaccessible Zn (47%), Pb (46%) and Cu (39%), and the least bioaccessible Cr (16%). In synthetic skin surface liquid (NIHS 96-10), only Cd was bioaccessible at worrying extent (20-44%). On the basis of US.EPA risk assessment, the exposure to PTM bioaccessible fractions or pseudo-total concentrations would not cause serious NCR and CR risks for human health. Significant health risks (Hazard Index >1 and CR > 10-4), especially for children, can occur if ingestion route is also considered. The findings underline the need for adequate protection of contaminated soil, sediments and mine tailings laying nearby urban agglomerates, to reduce the health risks for inhabitants and workers of Gafsa-Metlaoui mining area.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Niño , Monitoreo del Ambiente , Humanos , Metales Pesados/análisis , Fosfatos , Medición de Riesgo , Suelo , Contaminantes del Suelo/análisis , Túnez
3.
Environ Geochem Health ; 42(12): 4125-4139, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31595480

RESUMEN

The occurrence and bioaccessibility of potentially toxic elements (PTEs) in soils and sediments are investigated by many studies, especially in territories exploited by mining and ore-processing activities, nearby agriculture-driven rural cities. Accordingly, the present study aimed at evaluating the geochemical properties, potential bioavailability, and risks for environment and human health of the most concerning PTEs of study area (Gafsa mining basin, Tunisia) such as Cd, Cr, and Zn in selected soil, sediment, and mining waste samples. The extraction of these solid matrixes by modified EU-BCR sequential extraction revealed that the most easily extractable fractions of each PTE were very low (first 2 steps, < 10%), Cd was mainly associated with the oxidizable phase (likely organic matter), and Cr and Zn were mostly found in residual mineral fraction (likely occluded in non-siliceous mineral phase). The total cumulative concentration of each metal was found to be higher in soil/sediment profiles and ore-processing wastes than in phosphate rocks, indicating a metal enrichment due to mining activities. The aqua regia extraction of representative sediment samples revealed that Cd, Cr, and Zn concentrations were higher than non-polluted sediment standards. In contrast, other elements as Cu, Mn, and Pb essentially arose from natural bedrocks. The Unified BARGE method was applied to assess the risk of ingestion by human beings and wild/domestic animals of contaminated sediment particulate prone to wind erosion and air dispersion in the arid conditions of study area. An higher oral bioaccessibility was found for Cd than Zn and Cr, most concerning in acid gastric phase than in sub-neutral intestinal environment.


Asunto(s)
Residuos Industriales/análisis , Metales Pesados/análisis , Minería , Contaminantes del Suelo/análisis , Animales , Disponibilidad Biológica , Monitoreo del Ambiente , Humanos , Metales Pesados/farmacocinética , Metales Pesados/toxicidad , Medición de Riesgo , Contaminantes del Suelo/farmacocinética , Contaminantes del Suelo/toxicidad , Túnez
4.
J Environ Manage ; 128: 837-43, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23872213

RESUMEN

The influence of compost on the growth of bean plants irrigated with As-contaminated waters and its influence on the mobility of As in the soils and the uptake of As (as NaAs(III)O2) by plant components was studied at various compost application rates (3·10(4) and 6·10(4) kg ha(-1)) and at three As concentrations (1, 2 and 3 mg kg(-1)). The biomass and As and P concentrations of the roots, shoots and beans were determined at harvest time, as well as the chlorophyll content of the leaves and nonspecific and specifically bound As in the soil. The bean plants exposed to As showed typical phytotoxicity symptoms; no plants however died over the study. The biomass of the bean plants increased with the increasing amounts of compost added to the soil, attributed to the phytonutritive capacity of compost. Biomass decreased with increasing As concentrations, however, the reduction in the biomass was significantly lower with the addition of compost, indicating that the As phytotoxicity was alleviated by the compost. For the same As concentration, the As content of the roots, shoots and beans decreased with increasing compost added compared to the Control. This is due to partial immobilization of the As by the organic functional groups on the compost, either directly or through cation bridging. Most of the As adsorbed by the bean plants accumulated in the roots, while a scant allocation of As occurred in the beans. Hence, the addition of compost to soils could be used as an effective means to limit As accumulation in crops from As-contaminated waters.


Asunto(s)
Arsénico/metabolismo , Phaseolus/metabolismo , Contaminantes del Suelo/metabolismo , Suelo , Riego Agrícola , Arsénico/farmacocinética , Arsenitos/farmacocinética , Disponibilidad Biológica , Biomasa , Clorofila/metabolismo , Clorofila A , Phaseolus/efectos de los fármacos , Phaseolus/crecimiento & desarrollo , Fósforo/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Contaminantes Químicos del Agua/farmacocinética
5.
Front Nutr ; 9: 890786, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35571954

RESUMEN

The supplementation of bioactive compounds in astronaut's diets is undeniable, especially in the extreme and inhospitable habitat of future space settlements. This study aims to enhance the Martian and Lunar regolith fertility (testing two commercial simulants) through the provision of organic matter (manure) as established by in situ resource utilization (ISRU) approach. In this perspective, we obtained 8 different substrates after mixing Mojave Mars Simulant (MMS-1) or Lunar Highlands Simulant (LHS-1), with four different rates of manure (0, 10, 30, and 50%, w/w) from monogastric animals. Then, we assessed how these substrates can modulate fresh yield, organic acid, carotenoid content, antioxidant activity, and phenolic profile of lettuce plants (Lactuca sativa L.). Regarding fresh biomass production, MMS-1-amended substrates recorded higher yields than LHS-1-ones; plants grown on a 70:30 MMS-1/manure mixture produced the highest foliar biomass. Moreover, we found an increase in lutein and ß-carotene content by + 181 and + 263%, respectively, when applying the highest percentage of manure (50%) compared with pure simulants or less-amended mixtures. The 50:50 MMS-1/manure treatment also contained the highest amounts of individual and total organic acids, especially malate content. The highest antioxidant activity for the ABTS assay was recorded when no manure was added. The highest content of total hydroxycinnamic acids was observed when no manure was added, whereas ferulic acid content (most abundant compound) was the highest in 70:30 simulant/manure treatment, as well as in pure LHS-1 simulant. The flavonoid content was the highest in pure-simulant treatment (for most of the compounds), resulting in the highest total flavonoid and total phenol content. Our findings indicate that the addition of manure at specific rates (30%) may increase the biomass production of lettuce plants cultivated in MMS-1 simulant, while the phytochemical composition is variably affected by manure addition, depending on the stimulant. Therefore, the agronomic practice of manure amendment showed promising results; however, it must be tested with other species or in combination with other factors, such as fertilization rates and biostimulants application, to verify its applicability in space colonies for food production purposes.

6.
Plants (Basel) ; 11(23)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36501382

RESUMEN

To make feasible the crewed missions to the Moon or Mars, space research is focusing on the development of bioregenerative life support systems (BLSS) designed to produce food crops based on in situ resource utilisation (ISRU), allowing to reduce terrestrial input and to recycle organic wastes. In this regard, a major question concerns the suitability of native regoliths for plant growth and how their agronomic performance is affected by additions of organic matter from crew waste. We tested plant growth substrates consisting of MMS-1 (Mars) or LHS-1 (Lunar) simulants mixed with a commercial horse/swine monogastric manure (i.e., an analogue of crew excreta and crop residues) at varying rates (100:0, 90:10, 70:30, 50:50, w/w). Specifically, we measured: (i) lettuce (Lactuca sativa L. cultivar 'Grand Rapids') growth (at 30 days in open gas exchange climate chamber with no fertilisation), plant physiology, and nutrient uptake; as well as (ii) microbial biomass C and N, enzymatic activity, and nutrient bioavailability in the simulant/manure mixtures after plant growth. We discussed mechanisms of different plant yield, architecture, and physiology as a function of chemical, physico-hydraulic, and biological properties of different substrates. A better agronomic performance, in terms of plant growth and optically measured chlorophyll content, nutrient availability, and enzymatic activity, was provided by substrates containing MMS-1, in comparison to LHS-1-based ones, despite a lower volume of readily available water (likely due to the high-frequency low-volume irrigation strategy applied in our experiment and foreseen in space settings). Other physical and chemical properties, along with a different bioavailability of essential nutrients for plants and rhizosphere biota, alkalinity, and release of promptly bioavailable Na from substrates, were identified as the factors leading to the better ranking of MMS-1 in plant above and below-ground mass and physiology. Pure Mars (MMS-1) and Lunar (LHS-1) simulants were able to sustain plant growth even in absence of fertilisation, but the amendment with the monogastric manure significantly improved above- and below-ground plant biomass; moreover, the maximum lettuce leaf production, across combinations of simulants and amendment rates, was obtained in treatments resulting in a finer root system. Increasing rates of monogastric manure stimulated the growth of microbial biomass and enzymatic activities, such as dehydrogenase and alkaline phosphomonoesterase, which, in turn, fostered nutrient bioavailability. Consequently, nutrient uptake and translocation into lettuce leaves were enhanced with manure supply, with positive outcomes in the nutritional value of edible biomass for space crews. The best crop growth response was achieved with the 70:30 simulant/manure mixture due to good availability of nutrients and water compared to low amendment rates, and better-saturated hydraulic conductivity compared to high organic matter application. A 70:30 simulant/manure mixture is also a more sustainable option than a 50:50 mixture for a BLSS developed on ISRU strategy. Matching crop growth performance and (bio)chemical, mineralogical, and physico-hydraulic characteristics of possible plant growth media for space farming allows a better understanding of the processes and dynamics occurring in the experimental substrate/plant system, potentially suitable for an extra-terrestrial BLSS.

7.
Sci Total Environ ; 720: 137543, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32135285

RESUMEN

The configuration of a biologically fertile substrate for edible plant growth during long-term manned missions to Mars constitutes one of the main challenges in space research. Mars regolith amendment with compost derived from crew and crop waste in bioregenerative life support systems (BLSS) may generate a substrate able to extend crew autonomy and long-term survival in space. In this context, the aim of our work was threefold: first, to study the geochemistry and mineralogy of Mojave Mars Simulant (MMS-1) and the physico-chemical and hydraulic properties of mixtures obtained by mixing MMS-1 and green compost at varying rates (0:100, 30:70, 70:30, 100:0; v:v); secondly, to evaluate the potential use of MMS-1 as a growing medium of two lettuce (Lactuca sativa L.) cultivars; thirdly, to assess how compost addition may impact on sustainability of space agriculture by exploiting in situ resources. MMS-1 is a coarse-textured alkaline substrate consisting mostly of plagioclase, amorphous material and secondarily of zeolite, hematite and smectites. Although it can be a source of nutrients, it lacks organic matter, nitrogen, phosphorus and sulphur, which may be supplied by compost. Both cultivars grew well on all mixtures for 19 days under fertigation. Red Salanova lettuce produced a statistically higher dry biomass, leaf number and area than Green Salanova. Leaf area and plant dry biomass were the highest on 30:70 simulant:compost mixture. Nevertheless, the 70:30 mixture was the best substrate in terms of pore-size distribution for water-plant relationship and the best compromise for plant growth and sustainable use of compost, a limited resource in BLSS. Many remaining issues warrant further investigation concerning the dynamics of compost production, standardisation of supply during space missions and representativeness of simulants to real Mars regolith.


Asunto(s)
Compostaje , Agricultura , Biomasa , Fenómenos Químicos , Lactuca , Sistemas de Manutención de la Vida , Suelo
8.
Plants (Basel) ; 9(5)2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32423057

RESUMEN

Heavy payloads in future shuttle journeys to Mars present limiting factors, making self-sustenance essential for future colonies. Therefore, in situ resources utilization (ISRU) is the path to successful and feasible space voyages. This research frames the concept of planting leafy vegetables on Mars regolith simulant, ameliorating this substrate's fertility by the addition of organic residues produced in situ. For this purpose, two butterhead lettuce (Lactuca sativa L. var. capitata) cultivars (green and red Salanova®) were chosen to be cultivated in four different mixtures of MMS-1 Mojave Mars simulant:compost (0:100, 30:70, 70:30 and 100:0; v:v) in a phytotron open gas exchange growth chamber. The impact of compost rate on both crop performance and the nutritive value of green- and red-pigmented cultivars was assessed. The 30:70 mixture proved to be optimal in terms of crop performance, photosynthetic activity, intrinsic water use efficiency and quality traits of lettuce. In particular, red Salanova® showed the best performance in terms of these quality traits, registering 32% more phenolic content in comparison to 100% simulant. Nonetheless, the 70:30 mixture represents a more realistic scenario when taking into consideration the sustainable use of compost as a limited resource in space farming, while still accepting a slight significant decline in yield and quality in comparison to the 30:70 mixture.

9.
Chemosphere ; 233: 92-100, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31170588

RESUMEN

Due to carcinogenicity of hexavalent chromium [Cr(VI)], its accurate quantification in Cr-contaminated soils is of paramount importance. The aim of this work was to quantify Cr(VI) by species-specific IDMS in soil samples from two Italian case studies: A) farmland potentially contaminated by pseudo-total Cr and Zn and heavy hydrocarbons due to past illegal burial of tannery wastes; B) Solofrana valley where volcanic soils are potentially contaminated by pseudo-total Cr and Cu due to tannery activities. Hexavalent Cr extraction from soils was performed by focused microwaves (5 min at 80 °C) using 50 mM EDTA, followed by the separation of Cr species by IC and detection by ICP-MS. The Cr(VI) extracted from 20 soil samples of case study A ranged from 0.15 to 11.18 µg g-1, with 70% of samples exceeding the Cr(VI) screening value set by Italian Parliament for residential/urban soil to assess their potential contamination. Higher levels of Cr(VI) (22.0-107.1 µg g-1) were extracted from other 7 Cr-most-enriched soil samples, which required a pre-treatment with n-hexane to remove part of organic compounds from each sample, since these reducing agents made the quantification of Cr(VI) by IDMS more challenging because they caused an almost complete reduction of 50Cr(VI) used for IDMS quantification. Hexavalent Cr extracted from soil samples of case study B ranged from 0.70 to 5.79 µg g-1, with 42% of samples exceeding the value set by Italian legislation. In both case studies, the Cr(VI) extracted from soil was significantly correlated to the pseudo-total Cr content.


Asunto(s)
Cromo/análisis , Contaminación Ambiental/análisis , Espectrometría de Masas/métodos , Contaminantes del Suelo/análisis , Isótopos de Cromo/análisis , Ácido Edético/química , Italia , Suelo/química
10.
Environ Pollut ; 252(Pt B): 1599-1608, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31279978

RESUMEN

The risks for human health and the ecosystem due to potentially toxic elements (PTEs) were investigated in a farmland classified as potentially contaminated by Cr and Zn by analysing native vegetation and relative rhizo-soils. Rhizo-soils of different plant species were found to be enriched by Cr and Zn as well as by elements omitted from official environmental characterization, namely Cd, As and Pb. The ecological risk index (ERI) had a mean value of 510, indicating high to "very high" risk in different habitats. ERI above the very high risk threshold characterized the rhizo-soils of Lolium perenne, Erigeron sumatrensis, Oloptum thomasii and Amaranthus retroflexus. Two of these plant species (E. sumatrensis and A. retroflexus) are exotic in Italy and accumulated Cd in the shoots above the EU threshold for forage, suggesting a potential risk of Cd transfer to the food chain. Hence, this element was found to contribute most to the ERI. Cynodon dactylon was recognized as the most suitable plant species for the phytostabilization of the contaminated site, as it showed the highest bioavailable Cd accumulation in roots coupled with the highest frequency and soil-cover capacity during spring-summer, when the risk of soil resuspension is generally more intense.


Asunto(s)
Monitoreo del Ambiente/métodos , Residuos Industriales/análisis , Metales Pesados/análisis , Poaceae/crecimiento & desarrollo , Contaminantes del Suelo/análisis , Curtiembre , Ecosistema , Granjas , Humanos , Italia , Raíces de Plantas/química , Raíces de Plantas/crecimiento & desarrollo , Poaceae/química , Suelo/química
11.
Sci Total Environ ; 643: 516-526, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29945086

RESUMEN

Large variability in the spatial distribution and content of metals is generally recognised in anthropogenically-polluted soils, hence, a detailed site investigation implying the collection and analysis of a large number of soil samples is often necessary. To this regard, the selection of a rapid, cost-effective and accurate analytical technique to assess the concentration of metals in soil is of paramount importance. The overall objective of this work was to evaluate the possibility of assessing the aqua regia-extractable (AR) content of metals in soil from the multi-element profile of the soil obtained by a portable X-ray fluorescence analyser (pXRF). To this objective, we attempted: (i) to establish, by simple linear regressions, the relations occurring between the metal contents measured by pXRF and AR in laboratory setting on air-dried and 2 mm-sieved soil samples from two case studies (A-agricultural and B-industrial sites); (ii) to define metal-based linear models predicting metal AR contents from pXRF measurements; (iii) to assess the influence of metal properties and sources on relations found between the two analytical methods. Very satisfying correlations (R2 > 0.90) were observed between the AR and pXRF contents of Ca, Cu, Cr, Ni, Pb and Zn in the site A, and of Cd, Cu, Pb and Zn in the site B. For the majority of metals, lower AR than pXRF contents were measured, as result of the AR incomplete dissolution of metal-bearing silicates. This was not observed when metals - of anthropogenic origin - occurred in soil in very high concentrations (i.e., Cr for A and Pb for B). In both sites, the comparison among different regression parameters revealed a strong metal-dependence. Moreover, for most of the metals, the parameters of each metal-regression line significantly differed between the two case studies, indicating site-dependence of regression fits.

12.
Chemosphere ; 193: 464-471, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29156331

RESUMEN

Carrot (Daucus carota L.) is a widely consumed root vegetable, whose growth and safety might be threatened by growing-medium arsenic (As) contamination. By this work, we evaluated the effects of humic acids from Leonardite and NPK mineral fertilisation on As mobility and availability to carrot plants grown for 60 days in a volcanic soil irrigated with As-contaminated water - representing the most common scenario occurring in As-affected Italian areas. As expected, the irrigation with As-contaminated water caused a serious toxic effect on plant growth and photosynthetic rate; the highest rate of As also inhibited soil enzymatic activity. In contrast, the organic and mineral fertilisation alleviated, at least partially, the toxicity of As, essentially by stimulating plant growth and promoting nutrient uptake. The mobility of As in the volcanic soil and thus its phytoavailability were differently affected by the organic and mineral fertilisers; the application of humic acids mitigated the availability of the contaminant, likely by its partial immobilisation on humic acid sorption sites - thus raising up the intrinsic anionic sorption capacity of the volcanic soil; the mineral fertilisation enhanced the mobility of As in soil, probably due to competition of P for the anionic sorption sites of the soil variable-charge minerals, very affine to available P. These findings hence suggest that a proper soil management of As-polluted volcanic soils and amendment by stable organic matter might mitigate the environmental risk of these soils, thus minimising the availability of As to biota.


Asunto(s)
Arsénico/análisis , Daucus carota/metabolismo , Fertilizantes , Sustancias Húmicas , Minerales/farmacología , Contaminantes del Suelo/análisis , Verduras/metabolismo , Contaminación del Agua , Daucus carota/crecimiento & desarrollo , Suelo , Verduras/crecimiento & desarrollo , Contaminación del Agua/efectos adversos
13.
J Hazard Mater ; 300: 504-512, 2015 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-26241870

RESUMEN

Arsenic (As) co-precipitation is one of the major processes controlling As solubility in soils and waters. When As is co-precipitated with Al and Mg, the possible formation of layered double hydroxides (LDHs) and other nanocomposites can stabilize As in their structures thus making this toxic element less available. We investigated the nature and reactivity of Mg-Al-arsenate [As(V)] co-precipitated LDHs formed in solution affected by As concentration, pH, and aging. At the beginning of the co-precipitation process, poorly crystalline LDH and non-crystalline Al(Mg)-oxides form. Prolonged aging of the samples promotes crystallization of LDHs, evidenced by an increase in As K XANES intensities and XRD peak intensities. During aging Al- and/or Mg-oxides are likely transformed by dissolution/re-precipitation processes into more crystalline but still defective LDHs. Surface area, chemical composition, reactivity of the precipitates, and anion exchange properties of As(V) in the co-precipitates are influenced by pH, aging, and As concentration. This study demonstrates that (i) As(V) retards or inhibits the formation and transformation of LDHs and (ii) more As(V) is removed from solution if co-precipitated with Mg and Al than by sorption onto well crystallized LDHs.

14.
J Plant Physiol ; 171(15): 1378-84, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25046759

RESUMEN

The influence of two strains of Trichoderma (T. harzianum strain T22 and T. atroviride strain P1) on the growth of lettuce plants (Lactuca sativa L.) irrigated with As-contaminated water, and their effect on the uptake and accumulation of the contaminant in the plant roots and leaves, were studied. Accumulation of this non-essential element occurred mainly into the root system and reduced both biomass development and net photosynthesis rate (while altering the plant P status). Plant growth-promoting fungi (PGPF) of both Trichoderma species alleviated, at least in part, the phytotoxicity of As, essentially by decreasing its accumulation in the tissues and enhancing plant growth, P status and net photosynthesis rate. Our results indicate that inoculation of lettuce with selected Trichoderma strains may be helpful, beside the classical biocontrol application, in alleviating abiotic stresses such as that caused by irrigation with As-contaminated water, and in reducing the concentration of this metalloid in the edible part of the plant.


Asunto(s)
Arsénico/toxicidad , Lactuca/microbiología , Fotosíntesis/efectos de los fármacos , Trichoderma/fisiología , Arsénico/metabolismo , Biomasa , Lactuca/efectos de los fármacos , Lactuca/crecimiento & desarrollo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/microbiología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Suelo/química , Estrés Fisiológico , Agua/química
15.
J Hazard Mater ; 260: 644-51, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23832056

RESUMEN

Arsenite [As(III)] and arsenate [As(V)] sorption by Fe- and Al-based drinking-water treatment residuals (WTR) was studied as a function of particle size at different pHs, and in the presence of competing ligands, namely, phosphate, citrate, and oxalate. Both WTRs showed high affinity for As oxyanions. However, Al-WTR showed higher As(III) and As(V) sorption capacity than Fe-WTR because of their greater surface area. The effect of particle size on As sorption was pronounced on Fe-WTR, where the smaller fraction sorbed more As(III) and As(V) than the larger fractions, whereas relatively minor effects of particle size on As sorption was observed for Al-WTR. Arsenite sorption on both WTRs increased with increasing pH up to circum-neutral pHs and then decreased at higher pHs, whereas As(V) sorption decreased steadily with increasing pH. The capacity of competing ligands to inhibit sorption was greater for As(III) than As(V) on both WTRs (particularly on Al-WTR) following the sequence: oxalate

Asunto(s)
Arsénico/química , Agua Potable , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Adsorción , Aniones , Arsénico/análisis , Arsenitos , Cationes , Ácido Cítrico/química , Concentración de Iones de Hidrógeno , Ligandos , Oxalatos/química , Tamaño de la Partícula , Fosfatos/química , Contaminantes Químicos del Agua/química , Abastecimiento de Agua
16.
J Hazard Mater ; 189(1-2): 564-71, 2011 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-21419571

RESUMEN

We studied the sorption of As(III) and As(V) onto ferrihydrite as affected by pH, nature and concentration of organic [oxalic (OX), malic (MAL), tartaric (TAR), and citric (CIT) acid] and inorganic [phosphate (PO(4)), sulphate (SO(4)), selenate (SeO(4)) and selenite (SeO(3))] ligands, and the sequence of anion addition. The sorption capacity of As(III) was greater than that of As(V) in the range of pH 4.0-11.0. The capability of organic and inorganic ligands in preventing As sorption follows the sequence: SeO(4) ≈ SO(4) < OX < MAL ≈ TAR < CIT < SeO(3) ≪ PO(4). The efficiency of most of the competing ligands in preventing As(III) and As(V) sorption increased by decreasing pH, but PO(4) whose efficiency increased by increasing pH. In acidic systems all the competing ligands inhibited the sorption of As(III) more than As(V), but in alkaline environments As(III) and As(V) seem to be retained with the same strength on the Fe-oxide. Finally, the competing anions prevented As(III) and As(V) sorption more when added before than together or after As(III) or As(V).


Asunto(s)
Arseniatos/aislamiento & purificación , Arsenitos/aislamiento & purificación , Compuestos Férricos/química , Adsorción , Compuestos Inorgánicos , Ligandos , Compuestos Orgánicos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda