Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Nucleic Acids Res ; 51(19): 10719-10736, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37713607

RESUMEN

Artificial microRNAs (amiRNAs) are highly specific, 21-nucleotide (nt) small RNAs designed to silence target transcripts. In plants, their application as biotechnological tools for functional genomics or crop improvement is limited by the need of transgenically expressing long primary miRNA (pri-miRNA) precursors to produce the amiRNAs in vivo. Here, we analyzed the minimal structural and sequence requirements for producing effective amiRNAs from the widely used, 521-nt long AtMIR390a pri-miRNA from Arabidopsis thaliana. We functionally screened in Nicotiana benthamiana a large collection of constructs transiently expressing amiRNAs against endogenous genes and from artificially shortened MIR390-based precursors and concluded that highly effective and accurately processed amiRNAs can be produced from a chimeric precursor of only 89 nt. This minimal precursor was further validated in A. thaliana transgenic plants expressing amiRNAs against endogenous genes. Remarkably, minimal but not full-length precursors produce authentic amiRNAs and induce widespread gene silencing in N. benthamiana when expressed from an RNA virus, which can be applied into leaves by spraying infectious crude extracts. Our results reveal that the length of amiRNA precursors can be shortened without affecting silencing efficacy, and that viral vectors including minimal amiRNA precursors can be applied in a transgene-free manner to induce whole-plant gene silencing.


Asunto(s)
Arabidopsis , MicroARNs , MicroARNs/genética , Silenciador del Gen , Plantas Modificadas Genéticamente/genética , Nicotiana/genética , Transgenes , Arabidopsis/genética
2.
Plant J ; 110(4): 1166-1181, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35277899

RESUMEN

Artificial small RNAs (art-sRNAs) are 21-nucleotide small RNAs (sRNAs) computationally designed to silence plant genes or pathogenic RNAs with high efficacy and specificity. They are typically produced in transgenic plants to induce silencing at the whole-organism level, although their expression in selected tissues for inactivating genes in distal tissues has not been reported. Here, art-sRNAs designed against the magnesium chelatase subunit CHLI-encoding SULFUR gene (NbSu) were agroinfiltrated in Nicotiana benthamiana leaves, and the induction of local and systemic silencing was analyzed phenotypically by monitoring the appearance of the characteristic bleached phenotype, as well as molecularly by analyzing art-sRNA processing, accumulation and targeting activity and efficacy. We found that the two classes of art-sRNAs, artificial microRNAs (amiRNAs) and synthetic trans-acting small interfering RNAs (syn-tasiRNAs), are able to induce systemic silencing of NbSu, which requires high art-sRNA expression in the vicinity of the leaf petiole but is independent on the production of secondary sRNAs from NbSu mRNAs. Moreover, we revealed that 21-nucleotide amiRNA and syn-tasiRNA duplexes, and not their precursors, are the molecules moving between cells and through the phloem to systemically silence NbSu in upper leaves. In sum, our results indicate that 21-nucleotide art-sRNAs can move throughout the plant to silence plant genes in tissues different from where they are produced. This highlights the biotechnological potential of art-sRNAs, which might be applied locally for triggering whole-plant and highly specific silencing to regulate gene expression or induce resistance against pathogenic RNAs in next-generation crops. The present study demonstrates that artificial small RNAs, such as artificial microRNAs and synthetic trans-acting small interfering RNAs, can move long distances in plants as 21-nucleotide duplexes, specifically silencing endogenous genes in tissues different from where they are applied. This highlights the biotechnological potential of artificial small RNAs, which might be applied locally for triggering whole-plant, highly specific silencing to regulate gene expression or induce resistance against pathogenic RNAs in next-generation crops.


Asunto(s)
Genes de Plantas , MicroARNs , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , MicroARNs/metabolismo , Nucleótidos , Plantas Modificadas Genéticamente/genética , ARN de Planta/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
3.
J Exp Bot ; 74(5): 1564-1578, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36111947

RESUMEN

Potato spindle tuber viroid (PSTVd) is a plant pathogen naturally infecting economically important crops such as tomato (Solanum lycopersicum). Here, we aimed to engineer tomato plants highly resistant to PSTVd and developed several S. lycopersicum lines expressing an artificial microRNA (amiRNA) against PSTVd (amiR-PSTVd). Infectivity assays revealed that amiR-PSTVd-expressing lines were not resistant but instead hypersusceptible to the viroid. A combination of phenotypic, molecular, and metabolic analyses of amiRNA-expressing lines non-inoculated with the viroid revealed that amiR-PSTVd was accidentally silencing the tomato STEROL GLYCOSYLTRANSFERASE 1 (SlSGT1) gene, which caused late developmental and reproductive defects such as leaf epinasty, dwarfism, or reduced fruit size. Importantly, two independent transgenic tomato lines each expressing a different amiRNA specifically designed to target SlSGT1 were also hypersusceptible to PSTVd, thus demonstrating that down-regulation of SlSGT1 was responsible for the viroid-hypersusceptibility phenotype. Our results highlight the role of sterol glycosyltransferases in proper plant development and indicate that the imbalance of sterol glycosylation levels favors viroid infection, most likely by facilitating viroid movement.


Asunto(s)
MicroARNs , Solanum lycopersicum , Solanum tuberosum , Viroides , Viroides/genética , Solanum lycopersicum/genética , Regulación hacia Abajo , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , MicroARNs/genética , Enfermedades de las Plantas/genética , Solanum tuberosum/genética , ARN Viral/genética
4.
Nucleic Acids Res ; 48(11): 6234-6250, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32396204

RESUMEN

Eukaryotic RNA interference (RNAi) results in gene silencing upon the sequence-specific degradation of target transcripts by complementary small RNAs (sRNAs). In plants, RNAi-based tools have been optimized for high efficacy and high specificity, and are extensively used in gene function studies and for crop improvement. However, efficient methods for finely adjusting the degree of induced silencing are missing. Here, we present two different strategies based on artificial sRNAs for fine-tuning targeted RNAi efficacy in plants. First, the degree of silencing induced by synthetic-trans-acting small interfering RNAs (syn-tasiRNAs) can be adjusted by modifying the precursor position from which the syn-tasiRNA is expressed. The accumulation and efficacy of Arabidopsis TAS1c-based syn-tasiRNAs progressively decrease as the syn-tasiRNA is expressed from positions more distal to the trigger miR173 target site. And second, syn-tasiRNA activity can also be tweaked by modifying the degree of base-pairing between the 3' end of the syn-tasiRNA and the 5' end of the target RNA. Both strategies were used to finely modulate the degree of silencing of endogenous and exogenous target genes in Arabidopsis thaliana and Nicotiana benthamiana. New high-throughput syn-tasiRNA vectors were developed and functionally analyzed, and should facilitate the precise control of gene expression in multiple plant species.


Asunto(s)
Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Emparejamiento Base , Secuencia de Bases , Vectores Genéticos , MicroARNs/metabolismo , ARN Interferente Pequeño/metabolismo , Nicotiana/genética , Nicotiana/virología
5.
Nucleic Acids Res ; 48(15): 8767-8781, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32652041

RESUMEN

MicroRNA (miRNA)-mediated cleavage is involved in numerous essential cellular pathways. miRNAs recognize target RNAs via sequence complementarity. In addition to complementarity, in vitro and in silico studies have suggested that RNA structure may influence the accessibility of mRNAs to miRNA-induced silencing complexes (miRISCs), thereby affecting RNA silencing. However, the regulatory mechanism of mRNA structure in miRNA cleavage remains elusive. We investigated the role of in vivo RNA secondary structure in miRNA cleavage by developing the new CAP-STRUCTURE-seq method to capture the intact mRNA structurome in Arabidopsis thaliana. This approach revealed that miRNA target sites were not structurally accessible for miRISC binding prior to cleavage in vivo. Instead, we found that the unfolding of the target site structure plays a key role in miRISC activity in vivo. We found that the single-strandedness of the two nucleotides immediately downstream of the target site, named Target Adjacent nucleotide Motif, can promote miRNA cleavage but not miRNA binding, thus decoupling target site binding from cleavage. Our findings demonstrate that mRNA structure in vivo can modulate miRNA cleavage, providing evidence of mRNA structure-dependent regulation of biological processes.


Asunto(s)
MicroARNs/ultraestructura , Conformación de Ácido Nucleico , Interferencia de ARN , ARN/ultraestructura , Arabidopsis/genética , Sitios de Unión/genética , MicroARNs/genética , ARN/genética , Proteínas con Motivos de Reconocimiento de ARN/genética , ARN Mensajero/genética , Complejo Silenciador Inducido por ARN/genética
6.
Plant J ; 100(4): 720-737, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31350772

RESUMEN

RNA interference (RNAi)-based tools are used in multiple organisms to induce antiviral resistance through the sequence-specific degradation of target RNAs by complementary small RNAs. In plants, highly specific antiviral RNAi-based tools include artificial microRNAs (amiRNAs) and synthetic trans-acting small interfering RNAs (syn-tasiRNAs). syn-tasiRNAs have emerged as a promising antiviral tool allowing for the multi-targeting of viral RNAs through the simultaneous expression of several syn-tasiRNAs from a single precursor. Here, we compared in tomato plants the effects of an amiRNA construct expressing a single amiRNA and a syn-tasiRNA construct expressing four different syn-tasiRNAs against Tomato spotted wilt virus (TSWV), an economically important pathogen affecting tomato crops worldwide. Most of the syn-tasiRNA lines were resistant to TSWV, whereas the majority of the amiRNA lines were susceptible and accumulated viral progenies with mutations in the amiRNA target site. Only the two amiRNA lines with higher amiRNA accumulation were resistant, whereas resistance in syn-tasiRNA lines was not exclusive of lines with high syn-tasiRNA accumulation. Collectively, these results suggest that syn-tasiRNAs induce enhanced antiviral resistance because of the combined silencing effect of each individual syn-tasiRNA, which minimizes the possibility that the virus simultaneously mutates all different target sites to fully escape each syn-tasiRNA.


Asunto(s)
Resistencia a la Enfermedad/genética , ARN Interferente Pequeño , Solanum lycopersicum/genética , Solanum lycopersicum/virología , Tospovirus/genética , Regulación de la Expresión Génica de las Plantas , Mutación , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , Plantas Modificadas Genéticamente , ARN Viral , Nicotiana/genética , Tospovirus/patogenicidad
7.
Mol Plant Microbe Interact ; 32(2): 142-156, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30070616

RESUMEN

Artificial small RNAs (sRNAs), including artificial microRNAs (amiRNAs) and synthetic trans-acting small interfering RNAs (syn-tasiRNAs), are used to silence viral RNAs and confer antiviral resistance in plants. Here, the combined use of recent high-throughput methods for generating artificial sRNA constructs and the Tomato spotted wilt virus (TSWV)-Nicotiana benthamiana pathosystem allowed for the simple and rapid identification of amiRNAs with high anti-TSWV activity. A comparative analysis between the most effective amiRNA construct and a syn-tasiRNA construct including the four most effective amiRNA sequences showed that both were highly effective against two different TSWV isolates. These results highlight the usefulness of this high-throughput methodology for the fast-forward identification of artificial sRNAs with high antiviral activity prior to time-consuming generation of stably transformed plants.


Asunto(s)
MicroARNs , Tospovirus , Silenciador del Gen , Ensayos Analíticos de Alto Rendimiento , MicroARNs/genética , MicroARNs/aislamiento & purificación , MicroARNs/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/aislamiento & purificación , ARN Interferente Pequeño/metabolismo , ARN Viral/genética , Tospovirus/fisiología
8.
Plant Cell Physiol ; 60(11): 2382-2393, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31290971

RESUMEN

Small interfering RNAs (siRNA) are key regulators of gene expression that play essential roles in diverse biological processes. Trans-acting siRNAs (tasiRNAs) are a class of plant-endogenous siRNAs that lead the cleavage of nonidentical transcripts. TasiRNAs are usually involved in fine-tuning development. However, increasing evidence supports that tasiRNAs may be involved in stress response. Melon is a crop of great economic importance extensively cultivated in semiarid regions frequently exposed to changing environmental conditions that limit its productivity. However, knowledge of the precise role of siRNAs in general, and of tasiRNAs in particular, in regulating the response to adverse environmental conditions is limited. Here, we provide the first comprehensive analysis of computationally inferred melon-tasiRNAs responsive to two biotic (viroid-infection) and abiotic (cold treatment) stress conditions. We identify two TAS3-loci encoding to length (TAS3-L) and short (TAS3-S) transcripts. The TAS candidates predicted from small RNA-sequencing data were characterized according to their chromosome localization and expression pattern in response to stress. The functional activity of cmTAS genes was validated by transcript quantification and degradome assays of the tasiRNA precursors and their predicted targets. Finally, the functionality of a representative cmTAS3-derived tasiRNA (TAS3-S) was confirmed by transient assays showing the cleavage of ARF target transcripts.


Asunto(s)
Cucurbitaceae/metabolismo , ARN Interferente Pequeño/metabolismo , Cucurbitaceae/genética , Regulación de la Expresión Génica de las Plantas , ARN Interferente Pequeño/genética
9.
Nucleic Acids Res ; 45(13): 7736-7750, 2017 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-28499009

RESUMEN

In most eukaryotes, RNA silencing is an adaptive immune system regulating key biological processes including antiviral defense. To evade this response, viruses of plants, worms and insects have evolved viral suppressors of RNA silencing proteins (VSRs). Various VSRs, such as P1 from Sweet potato mild mottle virus (SPMMV), inhibit the activity of RNA-induced silencing complexes (RISCs) including an ARGONAUTE (AGO) protein loaded with a small RNA. However, the specific mechanisms explaining this class of inhibition are unknown. Here, we show that SPMMV P1 interacts with AGO1 and AGO2 from Arabidopsis thaliana, but solely interferes with AGO1 function. Moreover, a mutational analysis of a newly identified zinc finger domain in P1 revealed that this domain could represent an effector domain as it is required for P1 suppressor activity but not for AGO1 binding. Finally, a comparative analysis of the target RNA binding capacity of AGO1 in the presence of wild-type or suppressor-defective P1 forms revealed that P1 blocks target RNA binding to AGO1. Our results describe the negative regulation of RISC, the small RNA containing molecular machine.


Asunto(s)
Proteínas de Arabidopsis/antagonistas & inhibidores , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas Argonautas/antagonistas & inhibidores , ARN de Planta/metabolismo , Complejo Silenciador Inducido por ARN/metabolismo , Arabidopsis/virología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Modelos Biológicos , Mutagénesis Sitio-Dirigida , Plantas Modificadas Genéticamente , Potyviridae/genética , Potyviridae/metabolismo , Potyviridae/patogenicidad , Interferencia de ARN , ARN de Planta/genética , Complejo Silenciador Inducido por ARN/genética , Nicotiana/genética , Nicotiana/metabolismo , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo , Dedos de Zinc/genética
11.
Mol Plant Microbe Interact ; 30(1): 63-71, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27958768

RESUMEN

Zucchini yellow mosaic virus (ZYMV) induces serious diseases in cucurbits. To create a tool to screen for resistance genes, we cloned a wild ZYMV isolate and inserted the visual marker Rosea1 to obtain recombinant clone ZYMV-Ros1. While in some plant-virus combinations Rosea1 induces accumulation of anthocyanins in infected tissues, ZYMV-Ros1 infection of cucurbits did not lead to detectable anthocyanin accumulation. However, the recombinant virus did induce dark red pigmentation in infected tissues of the model plant Nicotiana benthamiana. In this species, ZYMV-Ros1 multiplied efficiently in local inoculated tissue but only a few progeny particles established infection foci in upper leaves. We used this system to analyze the roles of Dicer-like (DCL) genes, core components of plant antiviral RNA silencing pathways, in ZYMV infection. ZYMV-Ros1 local replication was not significantly affected in single DCL knockdown lines nor in double DCL2/4 and triple DCL2/3/4 knockdown lines. ZYMV-Ros1 systemic accumulation was not affected in knockdown lines DCL1, DCL2, and DCL3. However in DCL4 and also in DCL2/4 and DCL2/3/4 knockdown lines, ZYMV-Ros1 systemic accumulation dramatically increased, which highlights the key role of DCL4 in restricting virus systemic movement. The effect of DCL4 on ZYMV systemic movement was confirmed with a wild-type version of the virus.


Asunto(s)
Movimiento , Nicotiana/virología , Proteínas de Plantas/metabolismo , Potyvirus/fisiología , Regulación hacia Abajo , Genes de Plantas , Marcadores Genéticos , Enfermedades de las Plantas/virología , Nicotiana/genética , Nicotiana/microbiología
12.
Bioinformatics ; 32(1): 157-8, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26382195

RESUMEN

SUMMARY: The Plant Small RNA Maker Site (P-SAMS) is a web tool for the simple and automated design of artificial miRNAs (amiRNAs) and synthetic trans-acting small interfering RNAs (syn-tasiRNAs) for efficient and specific targeted gene silencing in plants. P-SAMS includes two applications, P-SAMS amiRNA Designer and P-SAMS syn-tasiRNA Designer. The navigation through both applications is wizard-assisted, and the job runtime is relatively short. Both applications output the sequence of designed small RNA(s), and the sequence of the two oligonucleotides required for cloning into 'B/c' compatible vectors. AVAILABILITY AND IMPLEMENTATION: The P-SAMS website is available at http://p-sams.carringtonlab.org. CONTACT: acarbonell@ibmcp.upv.es or nfahlgren@danforthcenter.org.


Asunto(s)
Internet , MicroARNs/genética , Plantas/genética , ARN de Planta/genética , ARN Interferente Pequeño/genética , Programas Informáticos , Biología Computacional
13.
PLoS Pathog ; 11(3): e1004755, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25806948

RESUMEN

In eukaryotes, ARGONAUTE proteins (AGOs) associate with microRNAs (miRNAs), short interfering RNAs (siRNAs), and other classes of small RNAs to regulate target RNA or target loci. Viral infection in plants induces a potent and highly specific antiviral RNA silencing response characterized by the formation of virus-derived siRNAs. Arabidopsis thaliana has ten AGO genes of which AGO1, AGO2, and AGO7 have been shown to play roles in antiviral defense. A genetic analysis was used to identify and characterize the roles of AGO proteins in antiviral defense against Turnip mosaic virus (TuMV) in Arabidopsis. AGO1, AGO2 and AGO10 promoted anti-TuMV defense in a modular way in various organs, with AGO2 providing a prominent antiviral role in leaves. AGO5, AGO7 and AGO10 had minor effects in leaves. AGO1 and AGO10 had overlapping antiviral functions in inflorescence tissues after systemic movement of the virus, although the roles of AGO1 and AGO10 accounted for only a minor amount of the overall antiviral activity. By combining AGO protein immunoprecipitation with high-throughput sequencing of associated small RNAs, AGO2, AGO10, and to a lesser extent AGO1 were shown to associate with siRNAs derived from silencing suppressor (HC-Pro)-deficient TuMV-AS9, but not with siRNAs derived from wild-type TuMV. Co-immunoprecipitation and small RNA sequencing revealed that viral siRNAs broadly associated with wild-type HC-Pro during TuMV infection. These results support the hypothesis that suppression of antiviral silencing during TuMV infection, at least in part, occurs through sequestration of virus-derived siRNAs away from antiviral AGO proteins by HC-Pro. These findings indicate that distinct AGO proteins function as antiviral modules, and provide a molecular explanation for the silencing suppressor activity of HC-Pro.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/virología , Proteínas Argonautas/metabolismo , Enfermedades de las Plantas/virología , Tymovirus/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Argonautas/genética , Enfermedades de las Plantas/genética , Tymovirus/genética
14.
Plant J ; 82(6): 1061-1075, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25809382

RESUMEN

Artificial microRNAs (amiRNAs) are used for selective gene silencing in plants. However, current methods to produce amiRNA constructs for silencing transcripts in monocot species are not suitable for simple, cost-effective and large-scale synthesis. Here, a series of expression vectors based on Oryza sativa MIR390 (OsMIR390) precursor was developed for high-throughput cloning and high expression of amiRNAs in monocots. Four different amiRNA sequences designed to target specifically endogenous genes and expressed from OsMIR390-based vectors were validated in transgenic Brachypodium distachyon plants. Surprisingly, amiRNAs accumulated to higher levels and were processed more accurately when expressed from chimeric OsMIR390-based precursors that include distal stem-loop sequences from Arabidopsis thaliana MIR390a (AtMIR390a). In all cases, transgenic plants displayed the predicted phenotypes induced by target gene repression, and accumulated high levels of amiRNAs and low levels of the corresponding target transcripts. Genome-wide transcriptome profiling combined with 5'-RLM-RACE analysis in transgenic plants confirmed that amiRNAs were highly specific.


Asunto(s)
Brachypodium/genética , Silenciador del Gen , MicroARNs/genética , Oryza/genética , Arabidopsis/genética , Clonación Molecular , Vectores Genéticos , Secuencias Invertidas Repetidas , Plantas Modificadas Genéticamente/genética , Precursores del ARN
15.
J Virol ; 88(20): 11933-45, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25100851

RESUMEN

The identification of viroid-derived small RNAs (vd-sRNAs) of 21 to 24 nucleotides (nt) in plants infected by viroids (infectious non-protein-coding RNAs of just 250 to 400 nt) supports their targeting by Dicer-like enzymes, the first host RNA-silencing barrier. However, whether viroids, like RNA viruses, are also targeted by the RNA-induced silencing complex (RISC) remains controversial. At the RISC core is one Argonaute (AGO) protein that, guided by endogenous or viral sRNAs, targets complementary RNAs. To examine whether AGO proteins also load vd-sRNAs, leaves of Nicotiana benthamiana infected by potato spindle tuber viroid (PSTVd) were agroinfiltrated with plasmids expressing epitope-tagged versions of AGO1, AGO2, AGO3, AGO4, AGO5, AGO6, AGO7, AGO9, and AGO10 from Arabidopsis thaliana. Immunoprecipitation analyses of the agroinfiltrated halos revealed that all AGOs except AGO6, AGO7, and AGO10 associated with vd-sRNAs: AGO1, AGO2, and AGO3 preferentially with those of 21 and 22 nt, while AGO4, AGO5, and AGO9 additionally bound those of 24 nt. Deep-sequencing analyses showed that sorting of vd-sRNAs into AGO1, AGO2, AGO4, and AGO5 depended essentially on their 5'-terminal nucleotides, with the profiles of the corresponding AGO-loaded vd-sRNAs adopting specific hot spot distributions along the viroid genome. Furthermore, agroexpression of AGO1, AGO2, AGO4, and AGO5 on PSTVd-infected tissue attenuated the level of the genomic RNAs, suggesting that they, or their precursors, are RISC targeted. In contrast to RNA viruses, PSTVd infection of N. benthamiana did not affect miR168-mediated regulation of the endogenous AGO1, which loaded vd-sRNAs with specificity similar to that of its A. thaliana counterpart. Importance: To contain invaders, particularly RNA viruses, plants have evolved an RNA-silencing mechanism relying on the generation by Dicer-like (DCL) enzymes of virus-derived small RNAs of 21 to 24 nucleotides (nt) that load and guide Argonaute (AGO) proteins to target and repress viral RNA. Viroids, despite their minimal genomes (non-protein-coding RNAs of only 250 to 400 nt), infect and incite disease in plants. The accumulation in these plants of 21- to 24-nt viroid-derived small RNAs (vd-sRNAs) supports the notion that DCLs also target viroids but does not clarify whether vd-sRNAs activate one or more AGOs. Here, we show that in leaves of Nicotiana benthamiana infected by potato spindle tuber viroid, the endogenous AGO1 and distinct AGOs from Arabidopsis thaliana that were overexpressed were associated with vd-sRNAs displaying the same properties (5'-terminal nucleotide and size) previously established for endogenous and viral small RNAs. Overexpression of AGO1, AGO2, AGO4, and AGO5 attenuated viroid accumulation, supporting their role in antiviroid defense.


Asunto(s)
Proteínas Argonautas/metabolismo , Virus de Plantas/genética , ARN Viral/metabolismo , Proteínas de Unión al ARN/metabolismo , Solanum tuberosum/virología , Viroides/metabolismo , Nicotiana/virología
16.
Plant Physiol ; 165(1): 15-29, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24647477

RESUMEN

Artificial microRNAs (amiRNAs) and synthetic trans-acting small interfering RNAs (syn-tasiRNAs) are used for small RNA-based, specific gene silencing or knockdown in plants. Current methods to generate amiRNA or syn-tasiRNA constructs are not well adapted for cost-effective, large-scale production or for multiplexing to specifically suppress multiple targets. Here, we describe simple, fast, and cost-effective methods with high-throughput capability to generate amiRNA and multiplexed syn-tasiRNA constructs for efficient gene silencing in Arabidopsis (Arabidopsis thaliana) and other plant species. amiRNA or syn-tasiRNA inserts resulting from the annealing of two overlapping and partially complementary oligonucleotides are ligated directionally into a zero background BsaI/ccdB-based expression vector. BsaI/ccdB vectors for amiRNA or syn-tasiRNA cloning and expression contain a modified version of Arabidopsis MIR390a or TAS1c precursors, respectively, in which a fragment of the endogenous sequence was substituted by a ccdB cassette flanked by two BsaI sites. Several amiRNA and syn-tasiRNA sequences designed to target one or more endogenous genes were validated in transgenic plants that (1) exhibited the expected phenotypes predicted by loss of target gene function, (2) accumulated high levels of accurately processed amiRNAs or syn-tasiRNAs, and (3) had reduced levels of the corresponding target RNAs.


Asunto(s)
Arabidopsis/genética , Silenciador del Gen , MicroARNs/genética , ARN Interferente Pequeño/genética , Secuencia de Bases , Clonación Molecular , Vectores Genéticos , MicroARNs/metabolismo , Datos de Secuencia Molecular , Plantas Modificadas Genéticamente , ARN de Planta/genética , ARN Interferente Pequeño/metabolismo
17.
Plant Cell ; 24(9): 3613-29, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23023169

RESUMEN

In RNA-directed silencing pathways, ternary complexes result from small RNA-guided ARGONAUTE (AGO) associating with target transcripts. Target transcripts are often silenced through direct cleavage (slicing), destabilization through slicer-independent turnover mechanisms, and translational repression. Here, wild-type and active-site defective forms of several Arabidopsis thaliana AGO proteins involved in posttranscriptional silencing were used to examine several AGO functions, including small RNA binding, interaction with target RNA, slicing or destabilization of target RNA, secondary small interfering RNA formation, and antiviral activity. Complementation analyses in ago mutant plants revealed that the catalytic residues of AGO1, AGO2, and AGO7 are required to restore the defects of Arabidopsis ago1-25, ago2-1, and zip-1 (AGO7-defective) mutants, respectively. AGO2 had slicer activity in transient assays but could not trigger secondary small interfering RNA biogenesis, and catalytically active AGO2 was necessary for local and systemic antiviral activity against Turnip mosaic virus. Slicer-defective AGOs associated with miRNAs and stabilized AGO-miRNA-target RNA ternary complexes in individual target coimmunoprecipitation assays. In genome-wide AGO-miRNA-target RNA coimmunoprecipitation experiments, slicer-defective AGO1-miRNA associated with target RNA more effectively than did wild-type AGO1-miRNA. These data not only reveal functional roles for AGO1, AGO2, and AGO7 slicer activity, but also indicate an approach to capture ternary complexes more efficiently for genome-wide analyses.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Argonautas/metabolismo , ARN Interferente Pequeño/genética , Proteínas de Unión al ARN/metabolismo , Sustitución de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Argonautas/genética , Dominio Catalítico , Estudio de Asociación del Genoma Completo , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación , Fenotipo , Enfermedades de las Plantas/virología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Potyvirus/fisiología , Estabilidad Proteica , Interferencia de ARN , ARN de Planta/genética , ARN de Planta/metabolismo , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/genética , Análisis de Secuencia de ARN , Transgenes
18.
Mol Plant Microbe Interact ; 26(10): 1211-24, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23745677

RESUMEN

Plum pox virus (PPV)-D and PPV-R are two isolates from strain D of PPV that differ in host specificity. Previous analyses of chimeras originating from PPV-R and PPV-D suggested that the N terminus of the coat protein (CP) includes host-specific pathogenicity determinants. Here, these determinants were mapped precisely by analyzing the infectivity in herbaceous and woody species of chimeras containing a fragment of the 3' region of PPV-D (including the region coding for the CP) in a PPV-R backbone. These chimeras were not infectious in Prunus persica, but systemically infected Nicotiana clevelandii and N. benthamiana when specific amino acids were modified or deleted in a short 30-amino-acid region of the N terminus of the CP. Most of these mutations did not reduce PPV fitness in Prunus spp. although others impaired systemic infection in this host. We propose a model in which the N terminus of the CP, highly relevant for virus systemic movement, is targeted by a host defense mechanism in Nicotiana spp. Mutations in this short region allow PPV to overcome the defense response in this host but can compromise the efficiency of PPV systemic movement in other hosts such as Prunus spp.


Asunto(s)
Proteínas de la Cápside/metabolismo , Genoma Viral/genética , Nicotiana/virología , Enfermedades de las Plantas/virología , Virus Eruptivo de la Ciruela/genética , Prunus/virología , Sustitución de Aminoácidos , Arabidopsis/inmunología , Arabidopsis/virología , Proteínas de la Cápside/genética , Quimera , Especificidad del Huésped , Modelos Biológicos , Mutación , Fenotipo , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta , Hojas de la Planta/inmunología , Hojas de la Planta/virología , Plantas Modificadas Genéticamente , Virus Eruptivo de la Ciruela/patogenicidad , Virus Eruptivo de la Ciruela/fisiología , Prunus/inmunología , Plantones/inmunología , Plantones/virología , Análisis de Secuencia de ADN , Nicotiana/inmunología
19.
Nucleic Acids Res ; 39(6): 2432-44, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21097888

RESUMEN

Trans-cleaving hammerheads with discontinuous or extended stem I and with tertiary stabilizing motifs (TSMs) have been tested previously against short RNA substrates in vitro at low Mg(2+) concentration. However, the potential of these ribozymes for targeting longer and structured RNAs in vitro and in vivo has not been examined. Here, we report the in vitro cleavage of short RNAs and of a 464-nt highly structured RNA from potato spindle tuber viroid (PSTVd) by hammerheads with discontinuous and extended formats at submillimolar Mg(2+). Under these conditions, hammerheads derived from eggplant latent viroid and peach latent mosaic viroid (PLMVd) with discontinuous and extended formats, respectively, where the most active. Furthermore, a PLMVd-derived hammerhead with natural TSMs showed activity in vivo against the same long substrate and interfered with systemic PSTVd infection, thus reinforcing the idea that this class of ribozymes has potential to control pathogenic RNA replicons.


Asunto(s)
ARN Catalítico/química , ARN Viral/metabolismo , Viroides/genética , Secuencia de Bases , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN/metabolismo , ARN Catalítico/metabolismo , ARN Viral/química
20.
Virus Res ; 323: 198964, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36223861

RESUMEN

Viroids are small, single-stranded, non-protein coding and circular RNAs able to infect host plants in the absence of any helper virus. They may elicit symptoms in their hosts, but the underlying molecular pathways are only partially known. Here we address the role of post-transcriptional RNA silencing in plant-viroid-interplay, with major emphasis on the involvement of this sequence-specific RNA degradation mechanism in both plant antiviroid defence and viroid pathogenesis. This review is a tribute to the memory of Dr. Ricardo Flores, who largely contributed to elucidate this and other molecular mechanisms involved in plant-viroid interactions.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda