RESUMEN
Brucellosis represents a major public health concern worldwide. Human transmission is mainly due to the consumption of unpasteurized milk and dairy products of infected animals. The gold standard for the diagnosis of Brucella spp in ruminants is the bacterial isolation, but it is time-consuming. Polymerase Chain Reaction (PCR) is a quicker and more sensitive technique than bacterial culture. Droplet digital PCR (ddPCR) is a novel molecular assay showing high sensitivity in samples with low amount of DNA and lower susceptibility to amplification inhibitors. Present study aimed to develop a ddPCR protocol for the detection of Brucella abortus in buffalo tissue samples. The protocol was validated using proficiency test samples for Brucella spp by real time qPCR. Furthermore, 599 tissue samples were examined. Among reference materials, qPCR and ddPCR demonstrated same performance and were able to detect up to 225 CFU/mL. Among field samples, ddPCR showed higher sensitivity (100%), specificity and accuracy of 93.4% and 94.15%, respectively. ddPCR could be considered a promising technique to detect B. abortus in veterinary specimens, frequently characterized by low amount of bacteria, high diversity in matrices and species and poor storage conditions.
Asunto(s)
Brucella abortus , Brucelosis , Búfalos , ADN Bacteriano , Reacción en Cadena en Tiempo Real de la Polimerasa , Sensibilidad y Especificidad , Animales , Brucella abortus/aislamiento & purificación , Brucella abortus/genética , Búfalos/microbiología , Brucelosis/veterinaria , Brucelosis/diagnóstico , Brucelosis/microbiología , ADN Bacteriano/análisis , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa/veterinaria , Reacción en Cadena de la Polimerasa/métodosRESUMEN
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) emerged in late December 2019 and spread worldwide, quickly becoming a pandemic. This zoonotic coronavirus shows a broad host range, including wildlife and domestic animals. Small ruminants are shown to be susceptible to SARS-CoV-2 but, to date, no natural infection has been reported. Herein, we performed a survey for SARS-CoV-2 among sheep and goats in the Campania region of Italy using an indirect multispecies ELISA. Next, positive sera were submitted to virus serum neutralization for the quantification of specific neutralizing antibodies. Out of 612 sheep and goats, 23 were found ELISA positive (3.75%) and 1 of them showed 1:20 neutralizing antibodies titer. No significant difference was found between the two species, as well as between male and female, geographical location and age. Our findings demonstrate that natural infection can occur in flocks in a field situation. Moreover, low susceptibility to SARS-CoV-2 is reported for sheep and goats, nevertheless, the continuous mutations of this virus open new scenarios on viral host range and tropism, highlighting the importance of investigating animal species that could represent ongoing or future possible hosts.
Asunto(s)
COVID-19 , Enfermedades de las Cabras , Enfermedades de las Ovejas , Animales , Ovinos , Masculino , Femenino , SARS-CoV-2 , COVID-19/veterinaria , Rumiantes , Cabras , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Enfermedades de las Ovejas/epidemiologíaRESUMEN
Toxoplasma gondii is a widespread protozoon that can infect both animals and humans. The main route of human infection is the consumption of the raw or undercooked meat of several animal species, including pigs. Although T. gondii represents a public health concern, control during slaughter is not mandatory, leading to a lack of information on the impact on human contagion as well as poor data availability in domestic animals intended for human consumption. We studied the presence of T. gondii in home-reared pigs, an unconventional type of farming subjected to stringent breeding conditions dictated by Italian regulation. Thus, the diaphragms, livers and masseter muscles from 480 pigs in Napoli Province (Italy) were analyzed using real-time PCR and digital droplet PCR. The results showed four matrices that tested positive for T. gondii with very low protozoan loads (0.62%), belonging to three different animals. The low density of the animals (the maximum was four animals per farm) and the biosafety farming features decisively contributed to the bioexclusion of this pathogen. Comparing these results to intensive and extensive farm data, lower exposure to the parasite was revealed, suggesting that this farming method might mitigate the risk of human exposure through meat consumption.
RESUMEN
Indirect transmission of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has been investigated but it is still not completely understood. The present study aimed to compare the persistence and viability of the lineage B.1 and omicron BA.1 subvariant in five daily-use materials to evaluate the role of fomites as a possible source of infection. Artificial contamination was performed in the first set of materials, ethylene vinyl acetate (EVA), cardboard, polystyrene, aluminium, and plastic. Further surfaces using BA.1 (glass, plexiglass, cotton, polyester, and tetrapak) were conducted. The persistence, viability of Vero E6 cell cultures and the residual infectivity of the two lineages were evaluated over 5 days. The results showed different stabilities between the tested matrices. In cotton and polyester, the RNA was undetectable in 24 and 48h post-contamination (p.c.), respectively, and the virus was not viable within 30 min, while in the other surfaces, both lineages, RNA was detectable until 120h p.c. A rapid decay of the viral load was revealed on cardboard, mostly for the omicron variant. Furthermore, on all the materials, longer stability of BA.1 was demonstrated, but showing a less intense CPE than the wild-type. EVA was the material that was able to better sustain virus stability as the virus developed CPE up to 72h p.c. In conclusion, the potential spread of SARS-CoV-2 through fomites is conceivable, albeit it is difficult to establish the real capacity to infect people. Nevertheless, thise information is fundamental to adopting the appropriate measures to mitigate the spread of SARS-CoV-2 and its variants.
Asunto(s)
COVID-19 , Fómites , Humanos , SARS-CoV-2 , Poliésteres , ARNRESUMEN
West Nile virus (WNV) is the most widespread arbovirus worldwide, responsible for severe neurological symptoms in humans as well as in horses and birds. The main reservoir and amplifier of the virus are birds, and migratory birds seem to have a key role in the introduction and spread of WNV during their migratory routes. WNV lineage 1 (L1) has been missing in Italy for almost 10 years, only to reappear in 2020 in two dead raptor birds in southern Italy. The present study reports the first equine outbreak in the Campania region. A 7-year-old horse died because of worsening neurological signs and underwent necropsy and biomolecular analyses. WNV-L1 was detected by real-time RT-PCR in the heart, brain, gut, liver, and spleen. Next Generation Sequence and phylogenetic analysis revealed that the strain responsible for the outbreak showed a nucleotide identity of over 98% with the strain found in Accipiter gentilis 2 years earlier in the same area, belonging to the WNV-L1 Western-Mediterranean sub-cluster. These results underline that WNV-L1, after reintroduction in 2020, has probably silently circulated during a 2-year eclipse, with no positive sample revealed by both serological and biomolecular examinations in horses, birds, and mosquitoes. The climate changes that have occurred in the last decades are evolving the epidemiology of WNV, with introductions or re-introductions of the virus in areas that were previously considered low risk. Thereby, the virus may easily amplify and establish itself to reappear with sporadic evident cases in susceptible hosts after several months or even years.
RESUMEN
Hepatitis C virus (HCV) is a major cause of chronic hepatitis, cirrhosis and hepatocellular carcinoma in humans. Humans were long considered the only hosts of Hepacivirus. Recently HCV-like sequences have been found in several animal species. Hepaciviruses are considered species-specific but a wider host range and a zoonotic role has been hypothesized. We report the first detection of bovine hepacivirus (BovHepV) sequences in wild boars. A total of 310 wild boars hunted in Campania region were investigated with a pan-hepacivirus nested-PCR protocol for the NS3 gene. Hepacivirus RNA was detected in 5.8% of the animals. Sequence and phylogenetic analysis showed high homology with BovHepV subtype F, with nucleotide identity of 99%. The positive wild boars were georeferenced, revealing high density of livestock farms, with no clear distinction between animal husbandry and hunting areas. These findings might suggest the ability of BovHepV to cross the host-species barrier and infect wild boars.
Asunto(s)
Hepacivirus , Hepatitis C , Animales , Bovinos , Hepacivirus/genética , Especificidad del Huésped , Filogenia , Sus scrofa , PorcinosRESUMEN
There is a growing interest in using monoclonal antibodies (mAbs) in the early stages of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection to prevent disease progression. Little is known about the efficacy of mAbs against the delta variant of concern and its clinical presentations. We evaluated the effect of casirivimab/imdevimab treatment among five delta vaccine breakthrough patients. Symptomatic non-hospitalized vaccinated patients were submitted to nasopharyngeal swabs for the detection of SARS-CoV-2 and Next-Generation Sequencing (NGS). Blood analysis and chest Computed Tomography were also performed. A cocktail of casirivimab/imdevimab was administrated, and patients were monitored weekly. Clinical evolution was evaluated by the regression of the symptoms, negative results by real-time RT-PCR, and by the need of hospitalization: these aspects were considered as significant outcomes. In four cases, symptom reversion and viral load reduction were observed within 2 days and 7 days after mAbs treatment, respectively. Only one case, suffering from thymoma, was hospitalized 2 days later because of respiratory failure, which reverted within 18 days. mAbs treatment seems to be safe and effective against the delta variant and its clinical manifestations.
Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales Humanizados , Humanos , SARS-CoV-2/genéticaRESUMEN
The first reports of SARS-CoV-2 among domestic and wild animals, together with the rapid emergence of new variants, have created serious concerns regarding a possible spillback from animal hosts, which could accelerate the evolution of new viral strains. The present study aimed to investigate the prevalence and the transmission of SARS-CoV-2 among both owned and stray pets. A total of 182 dogs and 313 cats were tested for SARS-CoV-2. Specimens collected among owned and stray pets were subjected to RT-PCR and serological examinations. No viral RNA was detected, while anti-N antibodies were observed in six animals (1.3%), one dog (0.8%) and five cats (1.7%). Animals' background revealed that owned cats, living with owners with COVID-19, showed significantly different prevalence compared to stray ones (p = 0.0067), while no difference was found among dogs. Among the seropositive pets, three owned cats also showed moderate neutralizing antibody titers. Pets and other species are susceptible to SARS-CoV-2 infection because of the spike affinity towards their ACE2 cellular receptor. Nevertheless, the risk of retransmission remains unclear since pet-to-human transmission has never been described. Due to the virus' high mutation rate, new reservoirs cannot be excluded; thus, it is reasonable to test pets, mostly if living in households affected by COVID-19.
RESUMEN
As of 15 June, there have been, globally, a total of 2103 laboratory-confirmed cases and one probable case of Monkeypox, including one death. We report two cases of vesicular infectious diseases, one of those is the first case of Monkeypox in the Campania Region. The report, therefore, highlights a recrudescent infection disease that could represent a challenge in differential diagnosis with other vesicular infectious diseases such as Varicella Zoster Virus, during a pandemic season that does not seem to end. Indeed, varicella should be carefullu considered in differential diagnosis according to its vesicular or pustular rash to have a prompt diagnosis and public health response in case of monkeypox infection.
RESUMEN
From 2019 to 2021, a retrospective molecular study was conducted in the Campania region (southern Italy) to determine the prevalence of viral diseases in domestic cats. A total of 328 dead animals were analyzed by Real-Time PCR for the presence of feline panleukopenia virus (FPV), feline leukemia virus (FeLV), feline enteric coronavirus (FCoV), rotavirus (RVA), feline herpesvirus type 1 (FHV-1), and feline calicivirus (FCV). The possible presence of SARS-CoV-2 was also investigated by Real-Time PCR. The cats included in this study were specifically sourced and referred by local veterinarians and local authorities to the Zooprofilactic Experimental Institute of Southern Italy (IZSM) for pathological evaluation. The samples consisted of owners, catteries, and stray cats. Results revealed: 73.5% positive cats for FPV (189/257), 23.6% for FeLV (21/89), 21.5% for FCoV (56/266), 11.4% for RVA (16/140), 9.05% for FeHV-1 (21/232), and 7.04 for FCV (15/213). In contrast, SARS-CoV-2 was never detected. FPV was more prevalent in winter (p = 0.0027). FCoV FHV-1, FCV, and RVA predominated in autumn, whereas FeLV predominated in summer. As expected, viral infections were found more frequently in outdoor and shelter cats than in indoor ones, although no statistical association was found between animal lifestyle and viral presence. The study showed a high prevalence of FPV, FeLV, and FCoV and a moderate prevalence of RVA, FHV-1, and FCV. Moreover, the prevalence of these pathogens varied among the cat populations investigated.
Asunto(s)
COVID-19 , Calicivirus Felino , Coronavirus Felino , Virosis , Gatos , Animales , Estudios Retrospectivos , Prevalencia , Anticuerpos Antivirales , SARS-CoV-2/genética , Virus de la Panleucopenia Felina , Virus de la Leucemia Felina , Coronavirus Felino/genética , Virosis/veterinariaRESUMEN
Neutralizing monoclonal antibodies (mAbs) for pre- and post-exposure prophylaxis of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) are largely used to prevent the progression of the disease by blocking viral attachment, host cell entry, and infectivity. Sotrovimab, like other available mAbs, has been developed against the receptor binding Domain of the Spike (S) glycoprotein of the virus. Nevertheless, the latest Omicron variant has shown marked mutations within the S gene, thus opening the question of the efficacy of these neutralizing molecules towards this novel variant. In the present observational study, we describe the effects of Sotrovimab in the treatment of 15 fully vaccinated patients, infected by SARS-CoV-2 Omicron sub-variants, who were selected on the basis of factors widely considered to affect a worse prognosis: immune suppression (n = 12) and/or chronic kidney disease (n = 5) with evidence of interstitial pneumonia in nine patients. The effectiveness of Sotrovimab in the treatment of severe cases of COVID-19 was demonstrated by the regression of symptoms (mean 5.7 days), no need of hospitalisation, improvement of general health conditions and viral clearance within 30 days in all patients. In conclusion, although loss or reduction of mAbs neutralizing activity against the Omicron variant have been described, Sotrovimab has clinically proven to be a safe and useful treatment for patients with high risk of progression to severe COVID-19 infected by Omicron sub-variants.
Asunto(s)
Anticuerpos Monoclonales Humanizados , Anticuerpos Neutralizantes , COVID-19 , Humanos , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales , COVID-19/terapia , SARS-CoV-2 , Glicoproteína de la Espiga del CoronavirusRESUMEN
A case of Mycobacterium tuberculosis infection is described in a dead adult male dog in Southern Italy. The carcass was found by the Health Authority in a gypsy encampment. It was admitted to our forensic veterinary medicine unit, with a suspicion of cruelty to the animal. Necropsy showed beating and traumatism signs, and mistreating was confirmed. Gross lesions included multiple nodular hepatic lesions, hemorrhagic enteritis with enlarged mesenteric lymph nodes, body cavity effusions, and an adrenal neoplasm. Bacteriological and molecular analyses were carried out on the liver lesions that enabled to identify M. tuberculosis SIT42 (LAM9). Drug-resistance patterns were evaluated by screening mutations on the rpoB and katG genes that showed susceptibility to both rifampin and isoniazid, respectively. Very few studies report canine tuberculosis, and little is known about the disease in Italy. To the authors' knowledge, this is the first report of Mycobacterium tuberculosis SIT42 infection in a dog in Italy.
RESUMEN
A case of Mycobacterium bovis infection is described in a death adult female wild boar in the province of Avellino, Campania Region (Southern Italy). The carcass was sent to the Istituto Zooprofilattico Sperimentale del Mezzogiorno (IZSM) of Portici, Naples, Italy, where postmortem examination was performed. At necropsy, a disseminated granulomatous infection was observed, with involvement of various lymph node districts, spleen and lungs. Therefore, all lymph nodes were collected, together with spleen and lung lesions, in order to carry out bacteriological and molecular analyses that confirmed an uncommon disseminated Mycobacterium bovis infection. Subsequently, an analysis of the spoligotype, performed by the National Reference Center of Mycobacterium bovis in Brescia (Northern Italy), resulted in the spoligotype SB0134, previously identified in bovine outbreaks in the same area where the wild boar was found.
RESUMEN
BACKGROUND: In December 2019 an outbreak of Severe Acute Respiratory Syndrome Coronavirus 2 was first observed in Wuhan, China. The virus has spread rapidly throughout the world creating a pandemic scenario. Several risk factors have been identified, such as age, sex, concomitant diseases as well as viral load. A key point is the role of asymptomatic people in spreading SARS-CoV-2. An observational study in Southern Italy was conducted in order to elucidate the possible role of asymptomatic individuals related to their viral loads in the transmission of the virus within two nursing facilities. METHODS: Oro-nasopharyngeal swabs from 179 nursing health care workers and patients were collected. SARS-CoV-2 RT-qPCR was performed and viral loads were calculated by using standard curve. A statistical correlation between viral loads, the presence/absence of symptoms, age and sex variables was investigated. RESULTS: SARS-CoV-2 was confirmed in the 50.8 % (n = 91) of the cases. Median age of positive individuals resulted higher than negative ones. Over 65 year as well as female individuals showed higher susceptibility to SARS-CoV-2 infection, OR = 3.93 and 2.86, respectively. Among 91 tested positive, the 70.3 % was symptomatic while the 29.7 % was asymptomatic. Median viral loads of asymptomatic individuals were found statistically significant higher than symptomatic ones (p = 0.001), while no influence was observed in age and sex variables. The presence of comorbidities was 8.9 folds higher in patients who showed and developed symptoms compared to non-symptomatic ones. Moreover, higher viral loads were found in patients who remained asymptomatic than pre-symptomatic (p = 0.022). CONCLUSIONS: A range from 9.2 to 69 % of confirmed SARS-CoV-2 cases remains asymptomatic, moreover, sporadic transmissions from asymptomatic people are reported, that makes their involvement an important issue to take into account in the spreading control of the virus. An asymptomatic clinical course was observed in the 29.7 % of positive individuals, moreover, median viral loads resulted to be statistically significant when compared to symptomatic ones. Surely, such a relevant frequency should not be ignored in relation to the spread of the disease in an environment which has not only important intrinsic (age, sex, concomitant diseases) but also extrinsic factors such as high population density and close contacts.
RESUMEN
In human medicine, "sudden death" has been defined by the World Health Organization (WHO) as a non-violent, unexpected death occurring less than 24 h from the onset of symptoms. The aims of this study were: (1) to estimate the proportional mortality ratio for "sudden and unexpected death" (SUD) in young dogs; (2) to investigate the pathological and microbiological findings in SUD cases in young dogs. For these purposes, a retrospective study of a total of 145 cases of young dead dogs was performed. For each case, we collected information about the age, medical history and the gross and microbiological findings of the animals. The results of this study found 21 cases of SUD. The most frequently observed clinical symptoms in the cases of sudden death were acute respiratory symptoms, followed by acute gastroenteric symptoms, non-specific symptoms and neurological symptoms. The evaluation of necropsy reports allowed us to observe enteritis in 18 out of 21 cases and pneumonia in seven out of 21 cases. Viral infection with Canine parvovirus type 2 was the most common cause of SUD observed. These results could provide a valuable tool for the investigation of sudden death in young dogs.
RESUMEN
Listeria monocytogenes (LM) is the causative agent of listeriosis in both animals and humans, representing one of the most severe food-borne diseases in humans. Out of 13 serotypes, only three (i.e., 1/2a, 1/2b, and 4b) are responsible for 95% of human outbreaks of listeriosis. Ruminants have been hypothesised to represent the main natural reservoir for this pathogen and to be involved in the transmission of Listeria to humans. During pregnancy, listeriosis in ruminants cause various reproductive disorders as well as abortion. However, little is known about abortion due to LM in water buffaloes (Bubalus bubalis). In this study, we report for the first time the detection of LM in a water buffalo foetus in the region of Campania, Italy. Complete necropsy was performed, and samples and swabs from the abomasum, kidneys, liver, lungs, and spleen were collected. Microbiological and molecular analyses were carried out to detect bacterial, viral, and protozoarian abortive pathogens. The results revealed the presence of LM in the liver, lungs, and abomasum, and no other agent was detected. Isolation was confirmed by biochemical and molecular tests. Molecular serotype characterisation was performed, and serogroup IVb was identified. In conclusion, because of the zoonotic implications of our findings, this report highlights the importance of including LM in the diagnostic panel in cases of bubaline abortion.
RESUMEN
Infectious diseases are a common cause of death in young dogs. Several factors are thought to predispose young dogs to microbiological infections. Identifying the cause of death is often a challenge, and broad diagnostic analysis is often needed. Here, we aimed to determine the infectious causes of death in young dogs aged up to 1 year, examining how it relates to age (under and over 6 months), lifestyle (owned versus ownerless), breed (purebred and crossbreed), and gender. A retrospective study was conducted in a 3-year period (2015-2017) on 138 dead dogs that had undergone necropsy and microbiological diagnostics. Enteritis and pneumonia were the most commonly observed lesions. Polymicrobism was more prevalent (62.3%) than single-agent infections and associated with a higher rate of generalised lesions. Ownerless dogs showed over a three-fold higher predisposition to viral coinfections than owned dogs. Above all, canine parvovirus was the most prevalent agent (77.5%), followed by canine coronavirus (31.1%) and canine adenovirus (23.9%); ownerless pups had a higher predisposition to these viruses. Escherichia coli (23.9%), Clostridium perfringens type A (18.1%), and Enterococcus spp. (8.7%) were the most commonly identified bacteria, which mostly involved in coinfections. A lower prevalence of CDV and Clostridium perfringens type A was observed in puppies under 6 months of age. In conclusion, this study is the first comprehensive survey on a wide panel of microbiological agents related to necropsy lesions. It lays the groundwork for future studies attempting to understand the circulation of infectious agents in a determined area.