Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Neurobiol Dis ; 168: 105688, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35288303

RESUMEN

OBJECTIVE: Status epilepticus (SE) models in rodents are commonly used to research mesial temporal lobe epilepsy (mTLE) in translational epilepsy research. However, due to differences in susceptibility of mice strains to chemoconvulsants, developing this model in mice is challenging. Mice offer experimental advantages; in particular, the ability to use transgenic strains could provide novel insights about neurobiological mechanisms or ease of genetic modification to test potential therapeutic targets. This study aimed to characterise the neuroinflammation, epileptic seizures and behavioural comorbidities after self-sustained Electrical Status Epilepticus (SSSE) in C57BL/6J mice. METHODS: SSSE was induced in C57BL/6J mice via prolonged electrical stimulation through a bipolar electrode implanted in the ventral hippocampus. Video electroencephalography (vEEG) monitoring was then performed between 1st month (acute timepoint) and 4th month (chronic timepoint). Brain tissues were collected at two timepoints for gene expression and immunohistochemical analysis: 7-days and 16-weeks post-SE. Additionally, at the chronic timepoint, animals underwent a series of neurobehavioural tests. RESULTS: Sixty percent of animals that underwent SSSE developed spontaneous seizures within the first month, and an additional 25% developed seizures at the chronic timepoint. The number of seizures per week during the chronic period ranged from 0.2 to 15.7. Mortality rate was ~9% during or after SSSE. SSSE animals displayed significant spatial memory impairment and depression-like behaviour compared to sham animals. mRNA expression of inflammatory cytokines was upregulated at 7-days following SE, but equal to sham levels at 16-weeks. SIGNIFICANCE: This study provides evidence that SSSE in C57BL/6J mice induces epileptic seizures consistent with those seen in patients with mTLE, along with cognitive and behavioural comorbidities. This model therefore has the potential to be used experimentally to uncover mechanisms to target against epileptogenesis, or to test novel treatment approaches.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Estado Epiléptico , Animales , Modelos Animales de Enfermedad , Electroencefalografía , Epilepsia/tratamiento farmacológico , Epilepsia del Lóbulo Temporal/metabolismo , Hipocampo/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Enfermedades Neuroinflamatorias , Convulsiones , Estado Epiléptico/metabolismo
2.
Proteomics ; 21(13-14): e2000210, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33860638

RESUMEN

Embryo implantation into the receptive endometrium is critical in pregnancy establishment, initially requiring reciprocal signalling between outer layer of the blastocyst (trophectoderm cells) and endometrial epithelium; however, factors regulating this crosstalk remain poorly understood. Although endometrial extracellular vesicles (EVs) are known to signal to the embryo during implantation, the role of embryo-derived EVs remains largely unknown. Here, we provide a comprehensive proteomic characterisation of a major class of EVs, termed small EVs (sEVs), released by human trophectoderm cells (Tsc-sEVs) and their capacity to reprogram protein landscape of endometrial epithelium in vitro. Highly purified Tsc-sEVs (30-200 nm, ALIX+ , TSG101+ , CD9/63/81+ ) were enriched in known players of implantation (LIFR, ICAM1, TAGLN2, WNT5A, FZD7, ROR2, PRICKLE2), antioxidant activity (SOD1, PRDX1/4/6), tissue integrity (EZR, RAC1, RHOA, TNC), and focal adhesions (FAK, ITGA2/V, ITGB1/3). Functionally, Tsc-sEVs were taken up by endometrial cells, altered transepithelial electrical resistance, and upregulated proteins implicated in embryo attachment (ITGA2/V, ITGB1/3), immune regulation (CD59, CD276, LGALS3), and antioxidant activity (GPX1/3/4, PRDX1/2/4/5/6): processes that are critical for successful implantation. Collectively, we provide critical insights into Tsc-sEV-mediated regulation of endometrial function that contributes to our understanding of the molecular basis of implantation.


Asunto(s)
Vesículas Extracelulares , Proteoma , Antígenos B7 , Implantación del Embrión , Endometrio , Células Epiteliales , Femenino , Humanos , Proteínas con Dominio LIM , Proteínas de la Membrana , Embarazo , Proteómica
3.
Proteomics ; 21(13-14): e2000119, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33580572

RESUMEN

Circulating small extracellular vesicles (sEV) represent promising non-invasive biomarkers that may aid in the diagnosis and risk-stratification of multiple myeloma (MM), an incurable blood cancer. Here, we comprehensively isolated and characterized sEV from human MM cell lines (HMCL) and patient-derived plasma (psEV) by specific EV-marker enrichment and morphology. Importantly, we demonstrate that HMCL-sEV are readily internalised by stromal cells to functionally modulate proliferation. psEV were isolated using various commercial approaches and pre-analytical conditions (collection tube types, storage conditions) assessed for sEV yield and marker enrichment. Functionally, MM-psEV was shown to regulate stromal cell proliferation and migration. In turn, pre-educated stromal cells favour HMCL adhesion. psEV isolated from patients with both pre-malignant plasma cell disorders (monoclonal gammopathy of undetermined significance [MGUS]; smouldering MM [SMM]) and MM have a similar ability to promote cell migration and adhesion, suggesting a role for both malignant and pre-malignant sEV in disease progression. Proteomic profiling of MM-psEV (305 proteins) revealed enrichment of oncogenic factors implicated in cell migration and adhesion, in comparison to non-disease psEV. This study describes a protocol to generate morphologically-intact and biologically functional sEV capable of mediating the regulation of stromal cells, and a model for the characterization of tumour-stromal cross-talk by sEV in MM.


Asunto(s)
Vesículas Extracelulares , Gammopatía Monoclonal de Relevancia Indeterminada , Mieloma Múltiple , Humanos , Proteómica , Células del Estroma
4.
J Biol Chem ; 295(38): 13377-13392, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32732283

RESUMEN

HIV-associated neurocognitive disorders (HANDs) are a frequent outcome of HIV infection. Effective treatment of HIV infection has reduced the rate of progression and severity but not the overall prevalence of HANDs, suggesting ongoing pathological process even when viral replication is suppressed. In this study, we investigated how HIV-1 protein Nef secreted in extracellular vesicles (exNef) impairs neuronal functionality. ExNef were rapidly taken up by neural cells in vitro, reducing the abundance of ABC transporter A1 (ABCA1) and thus cholesterol efflux and increasing the abundance and modifying lipid rafts in neuronal plasma membranes. ExNef caused a redistribution of amyloid precursor protein (APP) and Tau to lipid rafts and increased the abundance of these proteins, as well as of Aß42 ExNef further potentiated phosphorylation of Tau and activation of inflammatory pathways. These changes were accompanied by neuronal functional impairment. Disruption of lipid rafts with cyclodextrin reversed the phenotype. Short-term treatment of C57BL/6 mice with either purified recombinant Nef or exNef similarly resulted in reduced abundance of ABCA1 and elevated abundance of APP in brain tissue. The abundance of ABCA1 in brain tissue of HIV-infected human subjects diagnosed with HAND was lower, and the abundance of lipid rafts was higher compared with HIV-negative individuals. Levels of APP and Tau in brain tissue correlated with the abundance of Nef. Thus, modification of neuronal cholesterol trafficking and of lipid rafts by Nef may contribute to early stages of neurodegeneration and pathogenesis in HAND.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Infecciones por VIH/metabolismo , VIH-1/metabolismo , Microdominios de Membrana/metabolismo , Trastornos Neurocognitivos/metabolismo , Neuronas/metabolismo , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo , Proteínas tau/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/metabolismo , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Línea Celular Tumoral , Colesterol/genética , Colesterol/metabolismo , Infecciones por VIH/complicaciones , Infecciones por VIH/genética , Infecciones por VIH/patología , VIH-1/genética , Humanos , Microdominios de Membrana/genética , Ratones , Trastornos Neurocognitivos/etiología , Trastornos Neurocognitivos/genética , Trastornos Neurocognitivos/patología , Neuronas/patología , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/genética , Proteínas tau/genética
5.
Arterioscler Thromb Vasc Biol ; 40(10): 2346-2359, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32787522

RESUMEN

OBJECTIVE: AIBP (apolipoprotein A-I binding protein) is an effective and selective regulator of lipid rafts modulating many metabolic pathways originating from the rafts, including inflammation. The mechanism of action was suggested to involve stimulation by AIBP of cholesterol efflux, depleting rafts of cholesterol, which is essential for lipid raft integrity. Here we describe a different mechanism contributing to the regulation of lipid rafts by AIBP. Approach and Results: We demonstrate that modulation of rafts by AIBP may not exclusively depend on the rate of cholesterol efflux or presence of the key regulator of the efflux, ABCA1 (ATP-binding cassette transporter A-I). AIBP interacted with phosphatidylinositol 3-phosphate, which was associated with increased abundance and activation of Cdc42 and rearrangement of the actin cytoskeleton. Cytoskeleton rearrangement was accompanied with reduction of the abundance of lipid rafts, without significant changes in the lipid composition of the rafts. The interaction of AIBP with phosphatidylinositol 3-phosphate was blocked by AIBP substrate, NADPH (nicotinamide adenine dinucleotide phosphate), and both NADPH and silencing of Cdc42 interfered with the ability of AIBP to regulate lipid rafts and cholesterol efflux. CONCLUSIONS: Our findings indicate that an underlying mechanism of regulation of lipid rafts by AIBP involves PIP-dependent rearrangement of the cytoskeleton.


Asunto(s)
Citoesqueleto de Actina/enzimología , Colesterol/metabolismo , Microdominios de Membrana/enzimología , Racemasas y Epimerasas/metabolismo , Transportador 1 de Casete de Unión a ATP/metabolismo , Citoesqueleto de Actina/genética , Animales , Células HeLa , Humanos , Microdominios de Membrana/genética , Ratones , Fosfatidilinositol 3-Quinasa/metabolismo , Transducción de Señal , Células THP-1 , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo
6.
Int J Mol Sci ; 21(12)2020 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-32630398

RESUMEN

Engineered dermal templates have revolutionised the repair and reconstruction of skin defects. Their interaction with the wound microenvironment and linked molecular mediators of wound repair is still not clear. This study investigated the wound bed and acellular "off the shelf" dermal template interaction in a mouse model. Full-thickness wounds in nude mice were grafted with allogenic skin, and either collagen-based or fully synthetic dermal templates. Changes in the wound bed showed significantly higher vascularisation and fibroblast infiltration in synthetic grafts when compared to collagen-based grafts (P ≤ 0.05). Greater tissue growth was associated with higher prostaglandin-endoperoxide synthase 2 (Ptgs2) RNA and cyclooxygenase-2 (COX-2) protein levels in fully synthetic grafts. Collagen-based grafts had higher levels of collagen III and matrix metallopeptidase 2. To compare the capacity to form a double layer skin substitute, both templates were seeded with human fibroblasts and keratinocytes (so-called human skin equivalent or HSE). Mice were grafted with HSEs to test permanent wound closure with no further treatment required. We found the synthetic dermal template to have a significantly greater capacity to support human epidermal cells. In conclusion, the synthetic template showed advantages over the collagen-based template in a short-term mouse model of wound repair.


Asunto(s)
Trasplante de Piel/métodos , Piel Artificial/tendencias , Animales , Colágeno/metabolismo , Modelos Animales de Enfermedad , Epidermis , Fibroblastos/metabolismo , Queratinocitos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Piel/lesiones , Enfermedades de la Piel/metabolismo , Cicatrización de Heridas/fisiología
7.
Cell Tissue Res ; 376(3): 389-400, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30666537

RESUMEN

Cultured epithelial autograft (CEA) was the birth of skin tissue engineering and encompassed methodologies for the isolation and expansion of autologous basal keratinocytes for burn treatment that are still practiced at some specialised units around the world. One of the limitations of CEA, however, is the reliance on animal-derived material during the manufacturing process and despite all efforts to date, no xeno-free alternative with proven efficacy has been reported. Here, we investigate whether human-derived fibroblast feeder cells and human serum can sufficiently and effectively provide a suitable microenvironment for adult keratinocyte isolation and expansion. Human dermal fibroblasts and epidermal keratinocytes were isolated from discarded skin during abdominoplasty and breast reduction procedures and cultured in xeno-free conditions. We report that these xeno-free adult keratinocytes form similar numbers of colony-forming units as those cultured using the Green's methods; however, xeno-free keratinocytes express lower levels of α6 integrin (CD49f; a progenitor and stem cell marker). We identified IL-8 as a potential growth factor secreted by adult human fibroblasts that may enhance keratinocyte colony formation in human serum. Finally, we propose a step-by-step xeno-free isolation and cultivation methodology for adult keratinocytes that can be tested further in serial cultivation for clinical application.


Asunto(s)
Células Nutrientes , Queratinocitos/citología , Ingeniería de Tejidos/métodos , Adulto , Autoinjertos , Proliferación Celular , Separación Celular , Técnicas de Cocultivo , Femenino , Humanos , Integrina alfa6/metabolismo , Interleucina-8/metabolismo , Suero
8.
Arterioscler Thromb Vasc Biol ; 36(12): 2292-2303, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27758770

RESUMEN

OBJECTIVE: ABCA1 (ATP-binding cassette transporter A1) is the principal protein responsible for cellular cholesterol efflux. Abundance and functionality of ABCA1 is regulated both transcriptionally and post-translationally, with endocytosis of ABCA1 being an important element of post-translational regulation. Functional ABCA1 resides on the plasma membrane but can be internalized and either degraded or recycled back to the plasma membrane. The interaction between the degradative and recycling pathways determines the abundance of ABCA1 and may contribute to the efflux of intracellular cholesterol. APPROACH AND RESULTS: Here, we show that the principal pathway responsible for the internalization of ABCA1 leading to its degradation in macrophages is ARF6-dependent endocytic pathway. This pathway was predominant in the regulation of ABCA1 abundance and efflux of plasma membrane cholesterol. Conversely, the efflux of intracellular cholesterol was predominantly controlled by ARF6-independent pathways, and inhibition of ARF6 shifted ABCA1 into recycling endosomes enhancing efflux of intracellular cholesterol. CONCLUSIONS: We conclude that ARF6-dependent pathway is the predominant route responsible for the ABCA1 internalization and degradation, whereas ARF6-independent endocytic pathways may contribute to ABCA1 recycling and efflux of intracellular cholesterol.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Transportador 1 de Casete de Unión a ATP/metabolismo , Endocitosis , Macrófagos/enzimología , Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP/genética , Transportador 1 de Casete de Unión a ATP/genética , Animales , Membrana Celular/metabolismo , Colesterol/metabolismo , Dinamina II/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteolisis , Células RAW 264.7 , Interferencia de ARN , Transfección
9.
iScience ; 27(4): 109395, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38510122

RESUMEN

Although aging, repeat mild traumatic brain injury (RmTBI), and microbiome modifications independently change social behavior, there has been no investigation into their cumulative effects on social behavior and neuroplasticity within the prefrontal cortex. Therefore, we examined how microbiome depletion prior to RmTBI affected social behavior and neuroplasticity in adolescent and adult rats. Play, temperament analysis, elevated plus maze, and the hot/cold plate assessed socio-emotional function. Analyses of perineuronal nets (PNNs) and parvalbumin (PV) interneurons was completed. Social-emotional deficits were more pronounced in adults, with microbiome depletion attenuating social behavior deficits associated with RmTBI in both age groups. Microbiome depletion increased branch length and PNN arborization within the PFC but decreased the overall number of PNNs. Adults and males were more vulnerable to RmTBI. Interestingly, microbiome depletion may have attenuated the changes to neuroplasticity and subsequent social deficits, suggesting that the microbiome is a viable, but age-specific, target for RmTBI therapeutics.

10.
Adv Mater ; 35(21): e2210392, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36908046

RESUMEN

Glucose-responsive insulin-delivery platforms that are sensitive to dynamic glucose concentration fluctuations and provide both rapid and prolonged insulin release have great potential to control hyperglycemia and avoid hypoglycemia diabetes. Here, biodegradable and charge-switchable phytoglycogen nanoparticles capable of glucose-stimulated insulin release are engineered. The nanoparticles are "nanosugars" bearing glucose-sensitive phenylboronic acid groups and amine moieties that allow effective complexation with insulin (≈95% loading capacity) to form nanocomplexes. A single subcutaneous injection of nanocomplexes shows a rapid and efficient response to a glucose challenge in two distinct diabetic mouse models, resulting in optimal blood glucose levels (below 200 mg dL-1 ) for up to 13 h. The morphology of the nanocomplexes is found to be key to controlling rapid and extended glucose-regulated insulin delivery in vivo. These studies reveal that the injected nanocomplexes enabled efficient insulin release in the mouse, with optimal bioavailability, pharmacokinetics, and safety profiles. These results highlight a promising strategy for the development of a glucose-responsive insulin delivery system based on a natural and biodegradable nanosugar.


Asunto(s)
Diabetes Mellitus Experimental , Ratones , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Glucosa , Sistemas de Liberación de Medicamentos , Portadores de Fármacos/uso terapéutico , Insulina
11.
Cancers (Basel) ; 14(3)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35159107

RESUMEN

Over the last three decades changes in the treatment paradigm for newly diagnosed multiple myeloma (MM) have led to a significant increase in overall survival. Despite this, the majority of patients relapse after one or more lines of treatment while acquiring resistance to available therapies. Panobinostat, a pan-histone deacetylase inhibitor, was approved by the FDA in 2015 for patients with relapsed MM but how to incorporate panobinostat most effectively into everyday practice remains unclear. Dysregulation of the Wnt canonical pathway, and its key mediator ß-catenin, has been shown to be important for the evolution of MM and the acquisition of drug resistance, making it a potentially attractive therapeutic target. Despite concerns regarding the safety of Wnt pathway inhibitors, we have recently shown that the ß-catenin inhibitor Tegavivint is deliverable and effective in in vivo models of MM. In this study we show that the combination of low concentrations of panobinostat and Tegavivint have significant in vitro and in vivo anti-MM effects including in the context of proteasome inhibitor resistance, by targeting both aerobic glycolysis and mitochondrial respiration and the down-regulation of down-stream ß-catenin targets including myc, cyclinD1, and cyclinD2. The significant anti-MM effect of this novel combination warrants further evaluation for the treatment of MM patients with relapsed and/or refractory MM.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda