Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Bioinformatics ; 33(14): 2226-2228, 2017 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-28881959

RESUMEN

MOTIVATION: Modeling of signaling pathways is an important step towards the understanding and the treatment of diseases such as cancers, HIV or auto-immune diseases. MaBoSS is a software that allows to simulate populations of cells and to model stochastically the intracellular mechanisms that are deregulated in diseases. MaBoSS provides an output of a Boolean model in the form of time-dependent probabilities, for all biological entities (genes, proteins, phenotypes, etc.) of the model. RESULTS: We present a new version of MaBoSS (2.0), including an updated version of the core software and an environment. With this environment, the needs for modeling signaling pathways are facilitated, including model construction, visualization, simulations of mutations, drug treatments and sensitivity analyses. It offers a framework for automated production of theoretical predictions. AVAILABILITY AND IMPLEMENTATION: MaBoSS software can be found at https://maboss.curie.fr , including tutorials on existing models and examples of models. CONTACT: gautier.stoll@upmc.fr or laurence.calzone@curie.fr. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Biología Computacional/métodos , Simulación por Computador , Modelos Biológicos , Transducción de Señal , Programas Informáticos
2.
BMC Med Genomics ; 16(1): 143, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37344844

RESUMEN

Bi-allelic variants in the mitochondrial arginyl-transfer RNA synthetase (RARS2) gene have been involved in early-onset encephalopathies classified as pontocerebellar hypoplasia (PCH) type 6 and in epileptic encephalopathy. A variant (NM_020320.3:c.-2A > G) in the promoter and 5'UTR of the RARS2 gene has been previously identified in a family with PCH. Only a mild impact of this variant on the mRNA level has been detected. As RARS2 is non-dosage-sensitive, this observation is not conclusive in regard of the pathogenicity of the variant.We report and describe here a new patient with the same variant in the RARS2 gene, at the homozygous state. This patient presents with a clinical phenotype consistent with PCH6 although in the absence of lactic acidosis. In agreement with the previous study, we measured RARS2 mRNA levels in patient's fibroblasts and detected a partially preserved gene expression compared to control. Importantly, this variant is located in the Kozak sequence that controls translation initiation. Therefore, we investigated the impact on protein translation using a bioinformatic approach and western blotting. We show here that this variant, additionally to its effect on the transcription, also disrupts the consensus Kozak sequence, and has a major impact on RARS2 protein translation. Through the identification of this additional case and the characterization of the molecular consequences, we clarified the involvement of this Kozak variant in PCH and on protein synthesis. This work also points to the current limitation in the pathogenicity prediction of variants located in the translation initiation region.


Asunto(s)
Arginino-ARNt Ligasa , Enfermedades Cerebelosas , Atrofias Olivopontocerebelosas , Humanos , Atrofias Olivopontocerebelosas/genética , ARN Mensajero/genética
3.
Genome Med ; 14(1): 28, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35264221

RESUMEN

BACKGROUND: Blood plasma proteins play an important role in immune defense against pathogens, including cytokine signaling, the complement system, and the acute-phase response. Recent large-scale studies have reported genetic (i.e., protein quantitative trait loci, pQTLs) and non-genetic factors, such as age and sex, as major determinants to inter-individual variability in immune response variation. However, the contribution of blood-cell composition to plasma protein heterogeneity has not been fully characterized and may act as a mediating factor in association studies. METHODS: Here, we evaluated plasma protein levels from 400 unrelated healthy individuals of western European ancestry, who were stratified by sex and two decades of life (20-29 and 60-69 years), from the Milieu Intérieur cohort. We quantified 229 proteins by Luminex in a clinically certified laboratory and their levels of variation were analyzed together with 5.2 million single-nucleotide polymorphisms. With respect to non-genetic variables, we included 254 lifestyle and biochemical factors, as well as counts of seven circulating immune cell populations measured by hemogram and standardized flow cytometry. RESULTS: Collectively, we found 152 significant associations involving 49 proteins and 20 non-genetic variables. Consistent with previous studies, age and sex showed a global, pervasive impact on plasma protein heterogeneity, while body mass index and other health status variables were among the non-genetic factors with the highest number of associations. After controlling for these covariates, we identified 100 and 12 pQTLs acting in cis and trans, respectively, collectively associated with 87 plasma proteins and including 19 novel genetic associations. Genetic factors explained the largest fraction of the variability of plasma protein levels, as compared to non-genetic factors. In addition, blood-cell fractions, including leukocytes, lymphocytes, monocytes, neutrophils, eosinophils, basophils, and platelets, had a larger contribution to inter-individual variability than age and sex and appeared as confounders of specific genetic associations. Finally, we identified new genetic associations with plasma protein levels of five monogenic Mendelian disease genes including two primary immunodeficiency genes (Ficolin-3 and FAS). CONCLUSIONS: Our study identified novel genetic and non-genetic factors associated to plasma protein levels which may inform health status and disease management.


Asunto(s)
Proteínas Sanguíneas , Enfermedades de Inmunodeficiencia Primaria , Proteínas Sanguíneas/genética , Estudio de Asociación del Genoma Completo , Estado de Salud , Humanos , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
4.
Genome Biol ; 20(1): 32, 2019 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-30744685

RESUMEN

State-of-the-art methods assessing pathogenic non-coding variants have mostly been characterized on common disease-associated polymorphisms, yet with modest accuracy and strong positional biases. In this study, we curated 737 high-confidence pathogenic non-coding variants associated with monogenic Mendelian diseases. In addition to interspecies conservation, a comprehensive set of recent and ongoing purifying selection signals in humans is explored, accounting for lineage-specific regulatory elements. Supervised learning using gradient tree boosting on such features achieves a high predictive performance and overcomes positional bias. NCBoost performs consistently across diverse learning and independent testing data sets and outperforms other existing reference methods.


Asunto(s)
ADN Intergénico/genética , Enfermedades Genéticas Congénitas/genética , Polimorfismo de Nucleótido Simple , Selección Genética , Aprendizaje Automático Supervisado , Humanos , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda