Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Immunoassay Immunochem ; 39(2): 173-189, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29364086

RESUMEN

Salivarian trypanosomes evade the host immune system by continually swapping their protective variant surface glycoprotein (VSG) coat. Given that VSGs from various trypanosome stocks exhibited cross-reactivity (Camargo et al., Vet. Parasitol. 207, 17-33, 2015), we analyzed here which components are the antigenic determinants for this cross-reaction. Soluble forms of VSGs were purified from four Venezuelan animal trypanosome isolates: TeAp-N/D1, TeAp-ElFrio01, TeAp-Mantecal01, and TeGu-Terecay323. By using the VSG soluble form from TeAp-N/D1, we found that neither the inositol-1,2-cyclic phosphate moiety of the cross-reacting determinant nor the carbohydrate chains were exclusively responsible for its cross-reactivity. Then, all four purified glycoproteins were digested with papain and the resulting peptides were separated by high-performance liquid chromatography. Dot blot evaluation of the fractions using sera from trypanosome-infected animals yielded peptides that possessed cross-reaction activity, demonstrating for the first time that proteinaceous epitopes are also responsible for the cross-reactivity of trypanosome VSGs.


Asunto(s)
Carbohidratos/inmunología , Reacciones Cruzadas/inmunología , Fosfatos de Inositol/inmunología , Glicoproteínas de Membrana/inmunología , Proteínas Protozoarias/inmunología , Trypanosoma/inmunología , Animales , Carbohidratos/química , Equidae , Caballos , Fosfatos de Inositol/química , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/aislamiento & purificación , Proteínas Protozoarias/química , Trypanosoma/química
2.
Parasitology ; 144(7): 923-936, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28183369

RESUMEN

Trypanosoma equiperdum possesses a dense coat of a variant surface glycoprotein (VSG) that is used to evade the host immune response by a process known as antigenic variation. Soluble and membrane forms of the predominant VSG from the Venezuelan T. equiperdum TeAp-N/D1 strain (sVSG and mVSG, respectively) were purified to homogeneity; and antibodies against sVSG and mVSG were raised, isolated, and employed to produce anti-idiotypic antibodies that structurally mimic the VSG surface. Prospective VSG-binding partners were initially detected by far-Western blots, and then by immunoblots using the generated anti-idiotypic antibodies. Polypeptides of ~80 and 55 kDa were isolated when anti-idiotypic antibodies-Sepharose affinity matrixes were used as baits. Mass spectrometry sequencing yielded hits with various proteins from Trypanosoma brucei such as heat-shock protein 70, tryparedoxin peroxidase, VSG variants, expression site associated gene product 6, and two hypothetical proteins. In addition, a possible interaction with a protein homologous to the glutamic acid/alanine-rich protein from Trypanosoma congolense was also found. These results indicate that the corresponding orthologous gene products are candidates for VSG-interacting proteins in T. equiperdum.


Asunto(s)
Proteínas Protozoarias/metabolismo , Trypanosoma/metabolismo , Glicoproteínas Variantes de Superficie de Trypanosoma/metabolismo , Unión Proteica
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda