Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Plant J ; 106(2): 454-467, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33523525

RESUMEN

Plant metabolism is modulated by a complex interplay between internal signals and external cues. A major goal of all quantitative metabolomic studies is to clone the underlying genes to understand the mechanistic basis of this variation. Using fine-scale genetic mapping, in this work we report the identification and initial characterization of NAD-DEPENDENT MALIC ENZYME 1 (NAD-ME1) as the candidate gene underlying the pleiotropic network Met.II.15 quantitative trait locus controlling variation in plant metabolism and circadian clock outputs in the Bay × Sha Arabidopsis population. Transcript abundance and promoter analysis in NAD-ME1Bay-0 and NAD-ME1Sha alleles confirmed allele-specific expression that appears to be due a polymorphism disrupting a putative circadian cis-element binding site. Analysis of transfer DNA insertion lines and heterogeneous inbred families showed that transcript variation of the NAD-ME1 gene led to temporal shifts of tricarboxylic acid cycle intermediates, glucosinolate (GSL) accumulation, and altered regulation of several GSL biosynthesis pathway genes. Untargeted metabolomic analyses revealed complex regulatory networks of NAD-ME1 dependent upon the daytime. The mutant led to shifts in plant primary metabolites, cell wall components, isoprenoids, fatty acids, and plant immunity phytochemicals, among others. Our findings suggest that NAD-ME1 may act as a key gene to coordinate plant primary and secondary metabolism in a time-dependent manner.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Genes de Plantas/genética , Alelos , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Mapeo Cromosómico , Regulación de la Expresión Génica de las Plantas/genética , Redes Reguladoras de Genes/genética , Redes y Vías Metabólicas , Sitios de Carácter Cuantitativo/genética
2.
J Sci Food Agric ; 98(10): 3675-3683, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29315593

RESUMEN

BACKGROUND: Brassica crops together with cereals represent the basis of world supplies. Due to their importance, the production losses caused by Xanthomonas campestris pv. campestris (Xcc) infection represent a high economic impact. Understanding molecular and biochemical mechanisms of plants is essential to develop resistant crops with durable protection against diseases. In this regard, metabolomics has emerged as a valuable technology to provide an overview of the biological status of a plant exposed to a disease. This study investigated the dynamic changes in the metabolic profile of Brassica oleracea plants during an Xcc infection from leaves collected at five different days post infection using a mass spectrometry approach. RESULTS: Results showed that Xcc infection causes dynamic changes in the metabolome of B. oleracea. Moreover, induction/repression pattern of the metabolites implicated in the response follows a complex dynamics during infection progression, indicating a complex temporal response. Specific metabolic pathways such as alkaloids, coumarins or sphingolipids are postulated as promising key role candidates in the infection response. CONCLUSION: This work tries to decipher the changes produced on Brassica crops metabolome under Xcc infection and represents a step forward in the understanding of B. oleracea-Xcc interaction. © 2018 Society of Chemical Industry.


Asunto(s)
Brassica/metabolismo , Brassica/microbiología , Enfermedades de las Plantas/microbiología , Xanthomonas campestris/fisiología , Espectrometría de Masas , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología
3.
Curr Issues Mol Biol ; 19: 31-42, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26363709

RESUMEN

Understanding plant's defense mechanisms and their response to biotic stresses is of fundamental meaning for the development of resistant crop varieties and more productive agriculture. The Brassica genus involves a large variety of economically important species and cultivars used as vegetable source, oilseeds, forage and ornamental. Damage caused by pathogens attack affects negatively various aspects of plant growth, development, and crop productivity. Over the last few decades, advances in plant physiology, genetics, and molecular biology have greatly improved our understanding of plant responses to biotic stress conditions. In this regard, various 'omics' technologies enable qualitative and quantitative monitoring of the abundance of various biological molecules in a high-throughput manner, and thus allow determination of their variation between different biological states on a genomic scale. In this review, we have described advances in 'omic' tools (genomics, transcriptomics, proteomics and metabolomics) in the view of conventional and modern approaches being used to elucidate the molecular mechanisms that underlie Brassica disease resistance.


Asunto(s)
Brassica/genética , Brassica/metabolismo , Resistencia a la Enfermedad/genética , Genómica , Interacciones Huésped-Patógeno/genética , Metabolómica , Enfermedades de las Plantas/genética , Proteómica , Brassica/microbiología , Brassica/virología , Resistencia a la Enfermedad/inmunología , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno/inmunología , Metaboloma , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/virología , Proteoma , Estrés Fisiológico
4.
BMC Plant Biol ; 15: 145, 2015 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-26077340

RESUMEN

BACKGROUND: Due to its biennual life cycle Brassica oleracea is especially exposed to seasonal changes in temperature that could limit its growth and fitness. Thermal stress could limit plant growth, leaf development and photosynthesis. We evaluated the performance of two local populations of B. oleracea: one population of cabbage (B. oleracea capitata group) and one population of kale (B. oleracea acephala group) under limiting low and high temperatures. RESULTS: There were differences between crops and how they responded to high and low temperature stress. Low temperatures especially affect photosynthesis and fresh weight. Stomatal conductance and the leaf water content were dramatically reduced and plants produce smaller and thicker leaves. Under high temperatures there was a reduction of the weight that could be associated to a general impairment of the photosynthetic activity. CONCLUSIONS: Although high temperatures significantly reduced the dry weight of seedlings, in general terms, low temperature had a higher impact in B. oleracea physiology than high temperature. Interestingly, our results suggest that the capitata population is less sensitive to changes in air temperature than the acephala population.


Asunto(s)
Brassica/crecimiento & desarrollo , Brassica/fisiología , Frío , Respuesta al Choque Térmico , Calor , Estrés Fisiológico , Biomasa , Fluorescencia , Estomas de Plantas/anatomía & histología , Estomas de Plantas/fisiología
5.
Hortic Res ; 6: 103, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31645958

RESUMEN

The plant immune system is divided into two branches; one branch is based on the recognition of pathogen-associated molecular patterns (PAMP-triggered immunity), and the other relies on pathogenic effector detection (effector-triggered immunity). Despite each branch being involved in different complex mechanisms, both lead to transcription reprogramming and, thus, changes in plant metabolism. To study the defense mechanisms involved in the Brassica oleracea-Xanthomonas campestris pv. campestris (Xcc) interaction, we analyzed the plant transcriptome dynamics at 3 and 12 days postinoculation (dpi) by using massive analysis of 3'-cDNA ends. We identified more induced than repressed transcripts at both 3 and 12 dpi, although the response was greater at 12 dpi. Changes in the expression of genes related to the early infection stages were only detected at 12 dpi, suggesting that the timing of triggered defenses is crucial to plant survival. qPCR analyses in susceptible and resistant plants allowed us to highlight the potential role of two calcium-signaling proteins, CBP60g and SARD1, in the resistance against Xcc. This role was subsequently confirmed using Arabidopsis knockout mutants.

6.
Front Plant Sci ; 7: 1012, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27471510

RESUMEN

Modification of the content of secondary metabolites opens the possibility of obtaining vegetables enriched in these compounds related to plant defense and human health. We report the first results of a divergent selection for glucosinolate (GSL) content of the three major GSL in leaves: sinigrin (SIN), glucoiberin (GIB), and glucobrassicin (GBS) in order to develop six kale genotypes (Brassica oleracea var. acephala) with high (HSIN, HIGIB, HGBS) and low (LSIN, LGIB, LGBS) content. The aims were to determine if the three divergent selections were successful in leaves, how each divergent selection affected the content of the same GSLs in flower buds and seeds and to determine which genes would be involved in the modification of the content of the three GSL studied. The content of SIN and GIB after three cycles of divergent selection increased 52.5% and 77.68%, and decreased 51.9% and 45.33%, respectively. The divergent selection for GBS content was only successful and significant for decreasing the concentration, with a reduction of 39.04%. Mass selection is an efficient way of modifying the concentration of individual GSLs. Divergent selections realized in leaves had a side effect in the GSL contents of flower buds and seeds due to the novo synthesis in these organs and/or translocation from leaves. The results obtained suggest that modification in the SIN and GIB concentration by selection is related to the GSL-ALK locus. We suggest that this locus could be related with the indirect response found in the GBS concentration. Meantime, variations in the CYP81F2 gene expression could be the responsible of the variations in GBS content. The genotypes obtained in this study can be used as valuable materials for undertaking basic studies about the biological effects of the major GSLs present in kales.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda