Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Artículo en Inglés | MEDLINE | ID: mdl-38285176

RESUMEN

Duets are one of the most fascinating displays in animal vocal communication, where two animals fine-tune the timing of their emissions to create a coordinated signal. Duetting behavior is widespread in the animal kingdom and is present in insects, birds, and mammals. Duets are essential to regulate activities within and between social units. Few studies assessed the functions of these vocal emissions experimentally, and for many species, there is still no consensus on what duets are used for. Here, we reviewed the literature on the function of duets in non-human primates, investigating a possible link between the social organization of the species and the function of its duetting behavior. In primates and birds, social conditions characterized by higher promiscuity might relate to the emergence of duetting behavior. We considered both quantitative and qualitative studies, which led us to hypothesize that the shift in the social organization from pair living to a mixed social organization might have led to the emergence of mate defense and mate guarding as critical functions of duetting behavior. Territory/resource ownership and defense functions are more critical in obligate pair-living species. Finally, we encourage future experimental research on this topic to allow the formulation of empirically testable predictions.


Asunto(s)
Aves , Primates , Animales , Vocalización Animal/fisiología , Reproducción , Mamíferos
2.
Am J Primatol ; : e23673, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39135345

RESUMEN

The study of how animals adapt their behaviors depending on weather variables has gained particular significance in the context of climate change. This exploration offers insights into endangered species' potential threats and provides information on the direction to take in conservation activities. In this context, noninvasive, cost-effective, and potentially long-term monitoring systems, such as Passive Acoustic Monitoring (PAM), become particularly appropriate. Our study investigates the relationship between weather variables and the vocal behavior of Indri indri, the sole singing lemur species, within Madagascar's Maromizaha New Protected Area. Using PAM, we explore the factors shaping the vocalization patterns of this primate species in response to some environmental factors in their natural habitat. Analysis of an extensive audio data set collected across different years revealed the differential influence of temperature and precipitation on Indri indri vocal activity. We found that rainfall negatively influenced the emission of the vocalizations while warmer temperatures correlated with a greater emission of songs. The various environmental factors we considered also affected the timing of vocal emissions, showing the same pattern. Furthermore, our study confirms, once again, the strength of PAM as a valuable tool for studying vocal animal communication quickly, giving us information about long-term behavioral patterns that would be difficult to get in other ways. This research gives us further valuable information about how indris use vocalizations in their environment and how they adjust to environmental changes.

4.
Ann N Y Acad Sci ; 1537(1): 41-50, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38925552

RESUMEN

Animal songs differ from calls in function and structure, and have comparative and translational value, showing similarities to human music. Rhythm in music is often distributed in quantized classes of intervals known as rhythmic categories. These classes have been found in the songs of a few nonhuman species but never in their calls. Are rhythmic categories song-specific, as in human music, or can they transcend the song-call boundary? We analyze the vocal displays of one of the few mammals producing both songs and call sequences: Indri indri. We test whether rhythmic categories (a) are conserved across songs produced in different contexts, (b) exist in call sequences, and (c) differ between songs and call sequences. We show that rhythmic categories occur across vocal displays. Vocalization type and function modulate deployment of categories. We find isochrony (1:1 ratio, like the rhythm of a ticking clock) in all song types, but only advertisement songs show three rhythmic categories (1:1, 1:2, 2:1 ratios). Like songs, some call types are also isochronous. Isochrony is the backbone of most indri vocalizations, unlike human speech, where it is rare. In indri, isochrony underlies both songs and hierarchy-less call sequences and might be ancestral to both.


Asunto(s)
Vocalización Animal , Animales , Vocalización Animal/fisiología , Humanos , Primates/fisiología , Música/psicología , Evolución Biológica
5.
Curr Zool ; 70(3): 291-297, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39035758

RESUMEN

The search for common characteristics between the musical abilities of humans and other animal species is still taking its first steps. One of the most promising aspects from a comparative point of view is the analysis of rhythmic components, which are crucial features of human communicative performance but also well-identifiable patterns in the vocal displays of other species. Therefore, the study of rhythm is becoming essential to understand the mechanisms of singing behavior and the evolution of human communication. Recent findings provided evidence that particular rhythmic structures occur in human music and some singing animal species, such as birds and rock hyraxes, but only 2 species of nonhuman primates have been investigated so far (Indri indri and Hylobates lar). Therefore, our study aims to consistently broaden the list of species studied regarding the presence of rhythmic categories. We investigated the temporal organization in the singing of 3 species of crested gibbons (Nomascus gabriellae, Nomascus leucogenys, and Nomascus siki) and found that the most prominent rhythmic category was isochrony. Moreover, we found slight variation in songs' tempo among species, with N. gabriellae and N. siki singing with a temporal pattern involving a gradually increasing tempo (a musical accelerando), and N. leucogenys with a more regular pattern. Here, we show how the prominence of a peak at the isochrony establishes itself as a shared characteristic in the small apes considered so far.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda