RESUMEN
In human electrophysiology research, the high gamma part of the power spectrum (~>60 Hz) is a relatively new area of investigation. Despite a low signal-to-noise ratio, evidence exists that it contains significant information about activity in local cortical networks. Here, using magnetoencephalography (MEG), we found high gamma activity when comparing data from an n-back working memory task to resting data in a large sample of normal volunteers. Initial analysis of power spectra from 0-back, 2-back, and rest trials showed three frequency bands exhibiting task-related differences: alpha, beta, and high gamma. Unlike alpha and beta, the high gamma spectrum was broad, without a peak at a single frequency. In addition, power in high gamma was highest for the 2-back and lowest during rest, while the opposite pattern occurred in the other bands. Beamformer source localization of each of the three frequency bands revealed a distinct set of sources for high gamma. These included several regions of prefrontal cortex that exhibited greater power when both n-back conditions were compared to rest. A subset of these regions had more power when the 2-back was compared to 0-back, which indicates a role in working memory performance. Our results show that high gamma will be important for understanding cortical processing during cognitive and other tasks. Furthermore, data from human intracortical recordings suggest that high gamma is the aggregate of spiking in local cortical networks, which implies that MEG could serve to bridge experimental modalities by noninvasively observing task-related modulation of spiking rates.
Asunto(s)
Ritmo Gamma/fisiología , Memoria a Corto Plazo/fisiología , Corteza Prefrontal/fisiología , Adulto , Femenino , Humanos , Magnetoencefalografía , Masculino , Pruebas Neuropsicológicas , Adulto JovenRESUMEN
Recently, independent components analysis (ICA) of resting state magnetoencephalography (MEG) recordings has revealed resting state networks (RSNs) that exhibit fluctuations of band-limited power envelopes. Most of the work in this area has concentrated on networks derived from the power envelope of beta bandpass-filtered data. Although research has demonstrated that most networks show maximal correlation in the beta band, little is known about how spatial patterns of correlations may differ across frequencies. This study analyzed MEG data from 18 healthy subjects to determine if the spatial patterns of RSNs differed between delta, theta, alpha, beta, gamma, and high gamma frequency bands. To validate our method, we focused on the sensorimotor network, which is well-characterized and robust in both MEG and functional magnetic resonance imaging (fMRI) resting state data. Synthetic aperture magnetometry (SAM) was used to project signals into anatomical source space separately in each band before a group temporal ICA was performed over all subjects and bands. This method preserved the inherent correlation structure of the data and reflected connectivity derived from single-band ICA, but also allowed identification of spatial spectral modes that are consistent across subjects. The implications of these results on our understanding of sensorimotor function are discussed, as are the potential applications of this technique. Hum Brain Mapp 38:779-791, 2017. © 2016 Wiley Periodicals, Inc.
Asunto(s)
Mapeo Encefálico , Ondas Encefálicas/fisiología , Encéfalo/fisiología , Magnetoencefalografía , Red Nerviosa/fisiología , Descanso , Adulto , Encéfalo/diagnóstico por imagen , Estudios de Cohortes , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Red Nerviosa/diagnóstico por imagen , Oxígeno/sangre , Análisis de Componente PrincipalRESUMEN
The processing of social information in the human brain is widely distributed neuroanatomically and finely orchestrated over time. However, a detailed account of the spatiotemporal organization of these key neural underpinnings of human social cognition remains to be elucidated. Here, we applied functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) in the same participants to investigate spatial and temporal neural patterns evoked by viewing videos of facial muscle configurations. We show that observing the emergence of expressions elicits sustained blood oxygenation level-dependent responses in the superior temporal sulcus (STS), a region implicated in processing meaningful biological motion. We also found corresponding event-related changes in sustained MEG beta-band (14-30 Hz) oscillatory activity in the STS, consistent with the possible role of beta-band activity in visual perception. Dynamically evolving fearful and happy expressions elicited early (0-400 ms) transient beta-band activity in sensorimotor cortex that persisted beyond 400 ms, at which time it became accompanied by a frontolimbic spread (400-1000 ms). In addition, individual differences in sustained STS beta-band activity correlated with speed of emotion recognition, substantiating the behavioral relevance of these signals. This STS beta-band activity showed valence-specific coupling with the time courses of facial movements as they emerged into full-blown fearful and happy expressions (negative and positive coupling, respectively). These data offer new insights into the perceptual relevance and orchestrated function of the STS and interconnected pathways in social-emotion cognition.
Asunto(s)
Cognición/fisiología , Emociones/fisiología , Reconocimiento Facial/fisiología , Lóbulo Frontal/fisiología , Sistema Límbico/fisiología , Lóbulo Temporal/fisiología , Adulto , Ritmo beta/fisiología , Mapeo Encefálico , Circulación Cerebrovascular/fisiología , Potenciales Evocados , Femenino , Humanos , Imagen por Resonancia Magnética , Magnetoencefalografía , Masculino , Vías Nerviosas/fisiología , Pruebas Neuropsicológicas , Oxígeno/sangre , Estimulación Luminosa , Tiempo de Reacción/fisiologíaRESUMEN
What constitutes normal cortical dynamics in healthy human subjects is a major question in systems neuroscience. Numerous in vitro and in vivo animal studies have shown that ongoing or resting cortical dynamics are characterized by cascades of activity across many spatial scales, termed neuronal avalanches. In experiment and theory, avalanche dynamics are identified by two measures: (1) a power law in the size distribution of activity cascades with an exponent of -3/2 and (2) a branching parameter of the critical value of 1, reflecting balanced propagation of activity at the border of premature termination and potential blowup. Here we analyzed resting-state brain activity recorded using noninvasive magnetoencephalography (MEG) from 124 healthy human subjects and two different MEG facilities using different sensor technologies. We identified large deflections at single MEG sensors and combined them into spatiotemporal cascades on the sensor array using multiple timescales. Cascade size distributions obeyed power laws. For the timescale at which the branching parameter was close to 1, the power law exponent was -3/2. This relationship was robust to scaling and coarse graining of the sensor array. It was absent in phase-shuffled controls with the same power spectrum or empty scanner data. Our results demonstrate that normal cortical activity in healthy human subjects at rest organizes as neuronal avalanches and is well described by a critical branching process. Theory and experiment have shown that such critical, scale-free dynamics optimize information processing. Therefore, our findings imply that the human brain attains an optimal dynamical regime for information processing.
Asunto(s)
Mapeo Encefálico , Encéfalo/fisiología , Magnetoencefalografía , Modelos Neurológicos , Neuronas/fisiología , Descanso/fisiología , Adulto , Femenino , Humanos , Masculino , Dinámicas no Lineales , Adulto JovenRESUMEN
OBJECTIVE: The purpose of our study was to provide a more rigorous test of the causal hypothesis that chronic alcohol use impairs working memory performance. METHOD: We measured linear associations between a latent factor representing alcohol consumption and accuracy across four working memory tasks before and after accounting for familial confounding using a cotwin control design. Specifically, this study examined accuracy through a latent working memory score, the National Institutes of Health (NIH) Toolbox List Sorting, NIH Toolbox Picture Sequence, Penn Word Memory, and 2-back tasks. The study included data from 158 dizygotic and 278 monozygotic twins (Mage = 29 ± 3 years). RESULTS: In our initial sample-wide analysis, we did not detect any statistically significant associations between alcohol use and working memory accuracy. However, our cotwin control analyses showed that twins with greater levels of alcohol use exhibited worse scores on the latent working memory composite measure (B = -.25, CI [-.43, -.08], p < .01), Picture Sequence (B = -.31, CI [-.55, -.08], p < .01), and List Sorting (B = -.28, CI [-.51, -.06 ], p = .01) tasks than did their cotwins. CONCLUSIONS: These results are consistent with a potentially causal relationship between alcohol use and working memory performance that can be detected only after accounting for confounding familial factors. This highlights the importance of understanding the mechanisms that may underlie negative associations between alcohol use and cognitive performance, as well as the potential factors that influence both alcohol behaviors and cognition. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Asunto(s)
Cognición , Memoria a Corto Plazo , Adulto , Humanos , Consumo de Bebidas Alcohólicas/efectos adversos , Etanol , GemelosRESUMEN
BACKGROUND AND HYPOTHESIS: We used the uniquely high combined spatial and temporal resolution of magnetoencephalography to characterize working memory (WM)-related modulation of beta band activity in neuroleptic-free patients with schizophrenia in comparison to a large sample of performance-matched healthy controls. We also tested for effects of antipsychotic medication on identified differences in these same patients. STUDY DESIGN: Inpatients with schizophrenia (n = 21) or psychotic disorder not otherwise specified (n = 4) completed N-back and control tasks during magnetoencephalography while on placebo and during antipsychotic medication treatment, in a blinded, randomized, counterbalanced manner. Healthy, performance-matched controls (N = 100) completed the same tasks. WM-related neural activation was estimated as beta band (14-30 Hz) desynchronization throughout the brain in successive 400 ms time windows. Voxel-wise statistical comparisons were performed between controls and patients while off-medication at each time window. Significant clusters resulting from this between-groups analysis were then used as regions-of-interest, the activations of which were compared between on- and off-medication conditions in patients. STUDY RESULTS: Controls showed beta-band desynchronization (activation) of a fronto-parietal network immediately preceding correct button press responses-the time associated with WM updating and task execution. Altered activation in medication-free patients occurred largely during this time, in prefrontal, parietal, and visual cortices. Medication altered patients' neural responses such that the activation time courses in these regions-of-interest more closely resembled those of controls. CONCLUSIONS: These findings demonstrate that WM-related beta band alterations in schizophrenia are time-specific and associated with neural systems targeted by antipsychotic medications. Future studies may investigate this association by examining its potential neurochemical basis.
Asunto(s)
Antipsicóticos , Esquizofrenia , Humanos , Antipsicóticos/farmacología , Antipsicóticos/uso terapéutico , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/complicaciones , Magnetoencefalografía , Memoria a Corto Plazo/fisiología , Imagen por Resonancia Magnética , Pruebas Neuropsicológicas , Mapeo EncefálicoRESUMEN
Current views of the hippocampus assign this structure, and its prominent theta rhythms, a key role in both cognition and affect. We studied this duality of function in humans, where no direct evidence exists. Whole-head magnetoencephalographic (MEG) data were recorded to measure theta activity while healthy participants (N = 25) navigated two virtual Morris water mazes, one in which they risked receiving aversive shocks without warning to induce anxiety and one in which they were safe from shocks. Results showed that threat of shock elevated anxiety level and enhanced navigation performance as compared to the safe condition. MEG source analyses revealed that improved navigation performance during threat was preferentially associated with increased left septal (posterior) hippocampal theta (specifically 4-8 Hz activity), replicating previous research that emphasizes a predominant role of the septal third of the hippocampus in spatial cognition. Moreover, increased self-reported anxiety during threat was preferentially associated with increased left temporal (anterior) hippocampal theta (specifically 2-6 Hz activity), consistent with this region's involvement in mediating conditioned and innate fear. Supporting contemporary theory, these findings highlight simultaneous involvement of the human hippocampus in spatial cognition and anxiety, and clarify their distinct correlates.
Asunto(s)
Ansiedad/fisiopatología , Cognición/fisiología , Hipocampo/fisiología , Ritmo Teta/fisiología , Adulto , Afecto/fisiología , Algoritmos , Femenino , Hipocampo/fisiopatología , Humanos , Imagen por Resonancia Magnética , Magnetoencefalografía , Masculino , Aprendizaje por Laberinto/fisiología , Modelos Neurológicos , Modelos Psicológicos , Análisis de Regresión , Análisis y Desempeño de Tareas , Interfaz Usuario-Computador , Adulto JovenRESUMEN
BACKGROUND: Attention biases toward threat are often detected in individuals with anxiety disorders. Threat biases can be measured experimentally through dot-probe paradigms, in which individuals detect a probe following a stimulus pair including a threat. On these tasks, individuals with anxiety tend to detect probes that occur in a location previously occupied by a threat (i.e., congruent) faster than when opposite threats (i.e., incongruent). In pediatric anxiety disorders, dot-probe paradigms detect abnormal attention biases toward threat and abnormal ventrolateral prefrontal cortex (vlPFC) function. However, it remains unclear if this aberrant vlPFC activation occurs while subjects process threats (e.g., angry faces) or, alternatively, while they process and respond to probes. This magnetoencephalography (MEG) study was designed to answer this question. METHODS: Adolescents with either generalized anxiety disorder (GAD, n = 17) or no psychiatric diagnosis (n = 25) performed a dot-probe task involving angry and neutral faces while MEG data were collected. Synthetic Aperture Magnetometry (SAM) beamformer technique was used to determine whether there were group differences in power ratios while subjects processed threats (i.e., angry vs. neutral faces) or when subjects responded to incongruent versus. congruent probes. RESULTS: Group differences in vlPFC activation during the response period emerged with a 1-30 Hz frequency band. No group differences in vlPFC activation were detected in response to angry-face cues. CONCLUSIONS: In the dot-probe task, anxiety-related perturbations in vlPFC activation reflect abnormal attention control when responding to behaviorally relevant probes, but not to angry faces. Given that motor responses to these probes are used to calculate threat bias, this study provides insight into the pathophysiology reflected in this commonly used marker of anxiety. In addition, this finding may inform the development of novel anxiety-disorder treatments targeting the vlPFC to enhance attention control to task-relevant demands.
Asunto(s)
Ansiedad/patología , Atención , Corteza Prefrontal/patología , Adolescente , Ira , Estudios de Casos y Controles , Niño , Reacción de Fuga/fisiología , Expresión Facial , Femenino , Humanos , Magnetoencefalografía , Masculino , Estados UnidosRESUMEN
BACKGROUND: The glutamatergic modulator ketamine rapidly reduces depressive symptoms in individuals with treatment-resistant major depressive disorder (MDD). However, ketamine's effects on emotional processing biases remain largely unknown, and understanding these processes may help elucidate ketamine's mechanism of action. METHODS: Magnetoencephalography (MEG) was used to investigate ketamine's effects on early visual responses to affective stimuli in individuals with MDD (n=31) and healthy volunteers (HVs; n=24). Participants were enrolled in a double-blind, placebo-controlled, crossover clinical trial and were assessed at baseline and after subanesthetic-dose ketamine and placebo-saline infusions. During MEG recording, participants completed an emotional evaluation task in which they indicated the sex or emotional valence (happy-neutral or sad-angry) of facial stimuli. Source-localized event-related field (ERF) M100 and M170 amplitudes and latencies were extracted from regions of interest. Linear fixed effects models examined interactions between diagnosis, stimulus valence, and drug session for behavioral and MEG data. RESULTS: In baseline behavioral analyses, MDD participants exhibited higher accuracy for sad-angry than happy-neutral faces, and HVs responded faster to happy-neutral than sad-angry faces. In the MEG post-infusion analyses, calcarine M100 amplitudes were larger in MDD than HV participants post-placebo but became more similar post-ketamine. Finally, fusiform M170 amplitudes were associated with antidepressant response in MDD participants. LIMITATIONS: The modest sample size and the need to collapse across responses to happy and neutral faces to increase statistical power limit the generalizability of the findings. CONCLUSIONS: Ketamine rapidly altered emotional stimulus processing in MDD, laying the groundwork for future investigations of biomarkers of antidepressant treatment response. CLINICAL TRIAL: Clinicaltrials.gov, NCT#00088699.
Asunto(s)
Trastorno Depresivo Mayor , Trastorno Depresivo Resistente al Tratamiento , Ketamina , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Resistente al Tratamiento/tratamiento farmacológico , Emociones , Expresión Facial , Humanos , Ketamina/farmacología , Ketamina/uso terapéuticoRESUMEN
BACKGROUND: Irritability is prevalent and impairing in pediatric bipolar disorder (BD) but has been minimally studied using neuroimaging techniques. We used magnetoencephalography (MEG) to study theta band oscillations in the anterior cingulate cortex (ACC) during frustration in BD youth. ACC theta power is associated with attention to emotional stimuli, and the ACC may mediate responses to frustrating stimuli. METHODS: We used the affective Posner task, an attention paradigm that uses rigged feedback to induce frustration, to compare 20 medicated BD youth (14.9+/-2.0 years; 45% male) and 20 healthy controls (14.7+/-1.7 years; 45% male). MEG measured neuronal activity after negative and positive feedback; we also compared groups on reaction time, response accuracy, and self-reported affect. Patients met strict DSM-IV BD criteria and were euthymic. Controls had no psychiatric history. RESULTS: BD youth reported more negative affective responses than controls. After negative feedback, BD subjects, relative to controls, displayed greater theta power in the right ACC and bilateral parietal lobe. After positive feedback, BD subjects displayed lower theta power in the left ACC than did controls. Correlations between MEG, behavior, and affect were nonsignificant. CONCLUSION: In this first MEG study of BD youth, BD youth displayed patterns of theta oscillations in the ACC and parietal lobe in response to frustration-inducing negative feedback that differed from healthy controls. These data suggest that BD youth may display heightened processing of negative feedback and exaggerated self-monitoring after frustrating emotional stimuli. Future studies are needed with unmedicated bipolar youth, and comparison ADHD and anxiety groups.
Asunto(s)
Afecto , Trastorno Bipolar/fisiopatología , Trastorno Bipolar/psicología , Emoción Expresada , Magnetoencefalografía , Red Nerviosa/fisiopatología , Adolescente , Trastorno Bipolar/epidemiología , Niño , Femenino , Giro del Cíngulo/fisiopatología , Humanos , Masculino , Lóbulo Parietal/fisiopatologíaRESUMEN
What makes us become aware? A popular hypothesis is that if cortical neurons fire in synchrony at a certain frequency band (gamma), we become aware of what they are representing. We tested this hypothesis adopting brain-imaging techniques with good spatiotemporal resolution and frequency-specific information. Specifically, we examined the degree to which increases in event-related synchronization (ERS) in the gamma band were associated with awareness of a stimulus (its detectability) and/or the emotional content of the stimulus. We observed increases in gamma band ERS within prefrontal-anterior cingulate, visual, parietal, posterior cingulate, and superior temporal cortices to stimuli available to conscious awareness. However, we also observed increases in gamma band ERS within the amygdala, visual, prefrontal, parietal, and posterior cingulate cortices to emotional relative to neutral stimuli, irrespective of their availability to conscious access. This suggests that increased gamma band ERS is related to, but not sufficient for, consciousness.
Asunto(s)
Concienciación/fisiología , Mapeo Encefálico , Encéfalo/fisiología , Emociones/fisiología , Adulto , Atención/fisiología , Estado de Conciencia/fisiología , Femenino , Humanos , Imagen por Resonancia Magnética , Magnetoencefalografía , Masculino , Estimulación Luminosa , Desempeño Psicomotor , Percepción Visual/fisiologíaRESUMEN
The hippocampus and parahippocampal cortices exhibit theta oscillations during spatial navigation in animals and humans, and in the former are thought to mediate spatial memory formation. Functional specificity of human hippocampal theta, however, is unclear. Neuromagnetic activity was recorded with a whole-head 275-channel magnetoencephalographic (MEG) system as healthy participants navigated to a hidden platform in a virtual reality Morris water maze. MEG data were analyzed for underlying oscillatory sources in the 4-8 Hz band using a spatial filtering technique (i.e., synthetic aperture magnetometry). Source analyses revealed greater theta activity in the left anterior hippocampus and parahippocampal cortices during goal-directed navigation relative to aimless movements in a sensorimotor control condition. Additional analyses showed that left anterior hippocampal activity was predominantly observed during the first one-half of training, pointing to a role for this region in early learning. Moreover, posterior hippocampal theta was highly correlated with navigation performance, with the former accounting for 76% of the variance of the latter. Our findings suggest human spatial learning is dependent on hippocampal and parahippocampal theta oscillations, extending to humans a significant body of research demonstrating such a pivotal role for hippocampal theta in animal navigation.
Asunto(s)
Objetivos , Hipocampo/fisiología , Aprendizaje por Laberinto/fisiología , Giro Parahipocampal/fisiología , Desempeño Psicomotor/fisiología , Ritmo Teta/métodos , Adulto , Femenino , Humanos , Masculino , Estimulación Luminosa/métodos , Valor Predictivo de las Pruebas , Conducta Espacial/fisiología , Interfaz Usuario-ComputadorRESUMEN
OBJECTIVE: The "default network" represents a baseline condition of brain function and is of interest in schizophrenia research because its component brain regions are believed to be aberrant in the disorder. We hypothesized that magnetoencephalographic (MEG) source localization analysis would reveal abnormal resting activity within particular frequency bands in schizophrenia. EXPERIMENTAL DESIGN: Eyes-closed resting state MEG signals were collected for two comparison groups. Patients with schizophrenia (N = 38) were age-gender matched with healthy control subjects (N = 38), and with a group of unmedicated unaffected siblings of patients with schizophrenia (N = 38). To localize 3D-brain regional differences, synthetic aperture magnetometry was calculated across established frequency bands as follows: delta (0.9-4 Hz), theta (4-8 Hz), alpha (8-14 Hz), beta (14-30 Hz), gamma (30-80 Hz), and super-gamma (80-150 Hz). PRINCIPLE OBSERVATIONS: Patients with schizophrenia showed significantly reduced activation in the gamma frequency band in the posterior region of the medial parietal cortex. As a group, unaffected siblings of schizophrenia patients also showed significantly reduced activation in the gamma bandwidth across similar brain regions. Moreover, using the significant region for the patients and examining the gamma band power gave an odds ratio of 6:1 for reductions of two standard deviations from the mean. This suggests that the measure might be the basis of an intermediate phenotype. CONCLUSIONS: MEG resting state analysis adds to the evidence that schizophrenic patients experience this condition very differently than healthy controls. Whether this baseline difference relates to network abnormalities remains to be seen.
Asunto(s)
Mapeo Encefálico , Encéfalo/fisiopatología , Magnetoencefalografía/métodos , Descanso/fisiología , Esquizofrenia/fisiopatología , Adulto , Encéfalo/patología , Estudios de Casos y Controles , Femenino , Humanos , Imagenología Tridimensional/métodos , MasculinoRESUMEN
Magnetoencephalography was used to examine the effect of individual differences on the temporal dynamics of emotional face processing by grouping subjects based on their ability to detect masked valence-laden stimuli. Receiver operating characteristic curves and a nonparametric sensitivity measure were used to categorize subjects into those that could and could not reliably detect briefly presented fearful faces that were backward-masked by neutral faces. Results showed that, in a cluster of face-responsive sensors, the strength of the M170 response was modulated by valence only when subjects could reliably detect the masked fearful faces. Source localization of the M170 peak using synthetic aperture magnetometry identified sources in face processing areas such as right middle occipital gyrus and left fusiform gyrus that showed the valence effect for those target durations at which subjects were sensitive to the fearful stimulus. Subjects who were better able to detect fearful faces also showed higher trait anxiety levels. These results suggest that individual differences between subjects, such as trait anxiety levels and sensitivity to fearful stimuli, may be an important factor to consider when studying emotion processing.
Asunto(s)
Ansiedad/psicología , Expresión Facial , Miedo , Magnetismo/instrumentación , Magnetoencefalografía , Adulto , Ansiedad/diagnóstico , Encéfalo/fisiología , Femenino , Lateralidad Funcional , Humanos , Masculino , Curva ROCRESUMEN
We employed magnetoencephalography (MEG) to examine amygdala activity during a linguistic affective priming task. The experimental design included positive and negative word pairs. Using synthetic aperture magnetometry in the analysis of MEG data, we identified a left amygdala power increase in the theta frequency range during priming involving negative words. We found that the amygdala displayed a time-dependent intensification in responsiveness to negative stimuli, specifically between 150 and 400 ms after target presentation. This study provides evidence for theta power changes in the amygdala and demonstrates that the analysis of brain oscillations provides a powerful tool to explore mechanisms implicated in emotional processing.
Asunto(s)
Amígdala del Cerebelo/fisiología , Mapeo Encefálico , Emociones/fisiología , Magnetoencefalografía , Adulto , Amígdala del Cerebelo/efectos de la radiación , Femenino , Humanos , Lenguaje , Masculino , Estimulación Luminosa , Tiempo de Reacción/fisiología , Factores de TiempoRESUMEN
Anxiety disorders affect approximately 1 in 5 (18%) Americans within a given 1 year period, placing a substantial burden on the national health care system. Therefore, there is a critical need to understand the neural mechanisms mediating anxiety symptoms. We used unbiased, multimodal, data-driven, whole-brain measures of neural activity (magnetoencephalography) and connectivity (fMRI) to identify the regions of the brain that contribute most prominently to sustained anxiety. We report that a single brain region, the intraparietal sulcus (IPS), shows both elevated neural activity and global brain connectivity during threat. The IPS plays a key role in attention orienting and may contribute to the hypervigilance that is a common symptom of pathological anxiety. Hyperactivation of this region during elevated state anxiety may account for the paradoxical facilitation of performance on tasks that require an external focus of attention, and impairment of performance on tasks that require an internal focus of attention.
Asunto(s)
Trastornos de Ansiedad/fisiopatología , Excitabilidad Cortical , Lóbulo Parietal/fisiología , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética , Magnetoencefalografía , Masculino , Adulto JovenRESUMEN
This study investigated whether catechol-O-methyltransferase (COMT) Val/Met polymorphism was associated with variation in event-related desynchronization/synchronization (ERD/ERS) of responses during working memory (WM). 11 Val/Val and 11 Met/Met homozygous participants underwent magnetoencephalography (MEG) while performing a WM task. In contrast to small effects behaviourally, during the delay period Val/Val individuals showed lower ERS in the gamma band (Hz 30-50) in frontal regions, increased ERS in the alpha band (Hz 8-12) in the right frontal and parietal regions and increased ERD in the beta band (Hz 14-30) in the left fronto-temporal regions as compared with Met/Met homozygous individuals. During the response period Val/Val participants showed greater beta ERD in the prefrontal and parietotemporal regions. These results demonstrate that COMT genotype has a strong impact on brain responses (oscillatory activity) during WM performance likely a consequence of compensatory activity during the delay and response periods.
Asunto(s)
Encéfalo/fisiología , Catecol O-Metiltransferasa/genética , Memoria a Corto Plazo , Adulto , Encéfalo/enzimología , Femenino , Humanos , Magnetoencefalografía , Masculino , Lóbulo Parietal/fisiología , Polimorfismo Genético , Corteza Prefrontal/fisiología , Lóbulo Temporal/fisiologíaRESUMEN
Previous literature shows that feature binding processes elicit fronto-hippocampal areas. The time course of this process, however, remains unknown. This is the first study that investigates feature binding using magnetoencephalography. Synthetic aperture magnetometry analysis was used to localize sources of increased power in the theta band during the encoding phases of a feature-binding task in the left and right medial frontal gyri (Brodmann's area 10) and left and right anterior cingulate gyri. Theta band synchronization was observed in many of these same areas, but also in other areas not noted to have increased theta band power suggesting a broad network of regions subserving the encoding phase of feature binding.
Asunto(s)
Mapeo Encefálico , Giro del Cíngulo/fisiología , Magnetoencefalografía , Procesos Mentales/fisiología , Adulto , Femenino , Lateralidad Funcional/fisiología , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Pruebas Neuropsicológicas , Tiempo de Reacción/fisiología , Estadística como Asunto , Ritmo Teta , Factores de TiempoRESUMEN
In typical magnetoencephalography and/or electroencephalography functional connectivity analysis, researchers select one of several methods that measure a relationship between regions to determine connectivity, such as coherence, power correlations, and others. However, it is largely unknown if some are more suited than others for various types of investigations. In this study, the authors investigate seven connectivity metrics to evaluate which, if any, are sensitive to audiovisual integration by contrasting connectivity when tracking an audiovisual object versus connectivity when tracking a visual object uncorrelated with the auditory stimulus. The authors are able to assess the metrics' performances at detecting audiovisual integration by investigating connectivity between auditory and visual areas. Critically, the authors perform their investigation on a whole-cortex all-to-all mapping, avoiding confounds introduced in seed selection. The authors find that amplitude-based connectivity measures in the beta band detect strong connections between visual and auditory areas during audiovisual integration, specifically between V4/V5 and auditory cortices in the right hemisphere. Conversely, phase-based connectivity measures in the beta band as well as phase and power measures in alpha, gamma, and theta do not show connectivity between audiovisual areas. The authors postulate that while beta power correlations detect audiovisual integration in the current experimental context, it may not always be the best measure to detect connectivity. Instead, it is likely that the brain utilizes a variety of mechanisms in neuronal communication that may produce differential types of temporal relationships.
Asunto(s)
Percepción Auditiva/fisiología , Encéfalo/fisiología , Percepción Visual/fisiología , Estimulación Acústica/métodos , Adulto , Mapeo Encefálico/métodos , Femenino , Humanos , Magnetoencefalografía , Masculino , Persona de Mediana Edad , Vías Nerviosas/fisiología , Estimulación Luminosa/métodos , Adulto JovenRESUMEN
OBJECTIVE: Whole head magnetoencephalography was used to investigate the spatiotemporal dynamics of neuromagnetic brain activity associated with rhythmic auditory stimulation. METHODS: In order to characterize the evolution of the auditory responses we applied a Karhunen-Loève decomposition and k-means cluster analysis to globally compare spatial patterns of brain activity at different latencies and stimulation rates. Tones were presented binaurally at 27 different stimulation rates within a perceptually and behaviorally relevant range from 0.6 to 8.1 Hz. RESULTS: Over this range, we observed a linear increase of the amplitude of the main auditory response at 100 ms latency (N1m) with increasing inter-stimulus interval, and qualitative changes of the overall spatiotemporal dynamics of the auditory response. In particular, a transition occurred between a transient evoked response at low frequencies, and a continuous steady-state response at high frequencies. CONCLUSIONS: We show the onset of temporal overlap between responses to successive tones that leads to this transition. Response overlap begins to occur near 2 Hz, marking the onset of a continuous perceptual representation.