Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Brain Res ; 1154: 116-23, 2007 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-17498672

RESUMEN

A recent study [Tannan, V., Tommerdahl, M., Whitsel, B.L., 2006. Vibrotactile adaptation enhances spatial localization. Brain Res. 1102(1), 109-116 (Aug 2)] showed that pre-exposure of a skin region to a 5 s 25 Hz flutter stimulus ("adaptation") results in an approximately 2-fold improvement in the ability of neurologically healthy human adults to localize mechanical stimulation delivered to the same skin region that received the adapting stimulation. Tannan et al. [Tannan, V., Tommerdahl, M., Whitsel, B.L., 2006. Vibrotactile adaptation enhances spatial localization. Brain Res. 1102(1), 109-116 (Aug 2)] proposed that tactile spatial discriminative performance is improved following adaptation because adaptation is accompanied by an increase in the spatial contrast in the response of contralateral primary somatosensory cortex (SI) to mechanical skin stimulation--an effect identified in previous imaging studies of SI cortex in anesthetized non-human primates [e.g., Simons, S.B., Tannan, V., Chiu, J., Favorov, O.V., Whitsel, B.L., Tommerdahl, M, 2005. Amplitude-dependency of response of SI cortex to flutter stimulation. BMC Neurosci. 6(1), 43 (Jun 21) ; Tommerdahl, M., Favorov, O.V., Whitsel, B.L., 2002. Optical imaging of intrinsic signals in somatosensory cortex. Behav. Brain Res. 135, 83-91; Whitsel, B.L., Favorov, O.V., Tommerdahl, M., Diamond, M., Juliano, S., Kelly, D., 1989. Dynamic processes govern the somatosensory cortical response to natural stimulation. In: Lund, J.S., (Ed.), Sensory Processing in the Mammalian Brain. Oxford Univ. Press, New York, 79-107]. In the experiments described in this report, a paradigm identical to that employed previously by Tannan et al. [Tannan, V., Tommerdahl, M., Whitsel, B.L., 2006. Vibrotactile adaptation enhances spatial localization. Brain Res. 1102(1), 109-116 (Aug 2)] was used to study adults with autism. The results demonstrate that although cutaneous localization performance of adults with autism is significantly better than the performance of control subjects when the period of adapting stimulation is short (i.e., 0.5 s), tactile spatial discriminative capacity remained unaltered in the same subjects when the duration of adapting stimulation was increased (to 5 s). Both the failure of prior history of tactile stimulation to alter tactile spatial localization in adults with autism, and the better-than-normal tactile localization performance of adults with autism when the period of adaptation is short are concluded to be attributable to the deficient cerebral cortical GABAergic inhibitory neurotransmission characteristic of this disorder.


Asunto(s)
Adaptación Fisiológica/fisiología , Trastorno Autístico/fisiopatología , Percepción Espacial/fisiología , Tacto/fisiología , Vibración , Adulto , Análisis de Varianza , Conducta de Elección/fisiología , Humanos , Masculino , Estimulación Física , Factores de Tiempo
2.
J Neurosci ; 21(14): 5289-96, 2001 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-11438604

RESUMEN

Optimal perception of surface roughness requires lateral movement between skin and surface, suggesting the importance of temporal cues. The roughness of periodic gratings is affected by changing either inter-element spacing (groove width, G) or element width (ridge width, R). Peripheral neural responses to gratings depend quantitatively on a spatial variable, G, and a temporal variable, grating temporal frequency (F(t)), with changes in R acting indirectly through concomitant changes in F(t). We investigated, psychophysically, the contribution of temporal cues to human tactile perception of roughness, using gratings varying in either R or G. Gratings were scanned across the immobile fingerpad with controlled movement speed (S) and contact force. In one experiment, we found that roughness magnitude estimates depended on both G and F(t). In a second experiment, discrimination of the roughness of gratings varying in either R or G was affected by manipulating F(t). Overall, the effect of G on roughness judgments was much stronger than that of F(t), probably explaining why many previous studies using surfaces that varied only in inter-element spacing led to the conclusion that temporal factors play no role in roughness perception. However, the perceived roughness of R-varying gratings was determined by F(t) and not spatial variables. Roughness judgments were influenced by G and F(t) in a manner entirely consistent with predicted afferent response rates. Thus perceived roughness, like peripheral afferent responses, depends in part on temporal variables.


Asunto(s)
Señales (Psicología) , Aprendizaje Discriminativo/fisiología , Dedos/fisiología , Tacto/fisiología , Estimulación Acústica , Adolescente , Adulto , Análisis de Varianza , Umbral Diferencial/fisiología , Femenino , Dedos/inervación , Humanos , Masculino , Persona de Mediana Edad , Modelos Neurológicos , Periodicidad , Estimulación Física/instrumentación , Estimulación Física/métodos , Umbral Sensorial/fisiología , Propiedades de Superficie , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda