Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Genes Dev ; 35(13-14): 1020-1034, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34168041

RESUMEN

During mitosis, chromatin condensation is accompanied by a global arrest of transcription. Recent studies suggest transcriptional reactivation upon mitotic exit occurs in temporally coordinated waves, but the underlying regulatory principles have yet to be elucidated. In particular, the contribution of sequence-specific transcription factors (TFs) remains poorly understood. Here we report that Brn2, an important regulator of neural stem cell identity, associates with condensed chromatin throughout cell division, as assessed by live-cell imaging of proliferating neural stem cells. In contrast, the neuronal fate determinant Ascl1 dissociates from mitotic chromosomes. ChIP-seq analysis reveals that Brn2 mitotic chromosome binding does not result in sequence-specific interactions prior to mitotic exit, relying mostly on electrostatic forces. Nevertheless, surveying active transcription using single-molecule RNA-FISH against immature transcripts reveals differential reactivation kinetics for key targets of Brn2 and Ascl1, with transcription onset detected in early (anaphase) versus late (early G1) phases, respectively. Moreover, by using a mitotic-specific dominant-negative approach, we show that competing with Brn2 binding during mitotic exit reduces the transcription of its target gene Nestin Our study shows an important role for differential binding of TFs to mitotic chromosomes, governed by their electrostatic properties, in defining the temporal order of transcriptional reactivation during mitosis-to-G1 transition.


Asunto(s)
Mitosis , Células-Madre Neurales , Cromatina , Cromosomas/metabolismo , Mitosis/genética , Células-Madre Neurales/metabolismo , Factores de Transcripción/metabolismo
2.
Trends Biochem Sci ; 49(5): 384-386, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38503673

RESUMEN

A recent report by Chervova, Molliex, et al. shows redundant functions for the transcription factors (TFs) ESRRB and NR5A2 as mitotic bookmarkers in mouse embryonic stem (ES) cells. These occupy some of their target sites in mitotic chromatin, ensuring their robust reactivation after cell division, including markers and regulators of pluripotency.


Asunto(s)
Mitosis , Receptores de Estrógenos , Factores de Transcripción , Animales , Ratones , Factores de Transcripción/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Embrionarias de Ratones/citología , Cromatina/metabolismo , Humanos
3.
Cell ; 155(3): 621-35, 2013 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-24243019

RESUMEN

Direct lineage reprogramming is a promising approach for human disease modeling and regenerative medicine, with poorly understood mechanisms. Here, we reveal a hierarchical mechanism in the direct conversion of fibroblasts into induced neuronal (iN) cells mediated by the transcription factors Ascl1, Brn2, and Myt1l. Ascl1 acts as an "on-target" pioneer factor by immediately occupying most cognate genomic sites in fibroblasts. In contrast, Brn2 and Myt1l do not access fibroblast chromatin productively on their own; instead, Ascl1 recruits Brn2 to Ascl1 sites genome wide. A unique trivalent chromatin signature in the host cells predicts the permissiveness for Ascl1 pioneering activity among different cell types. Finally, we identified Zfp238 as a key Ascl1 target gene that can partially substitute for Ascl1 during iN cell reprogramming. Thus, a precise match between pioneer factors and the chromatin context at key target genes is determinative for transdifferentiation to neurons and likely other cell types.


Asunto(s)
Reprogramación Celular , Embrión de Mamíferos/citología , Fibroblastos/citología , Redes Reguladoras de Genes , Neuronas/citología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular , Cromatina/metabolismo , Fibroblastos/metabolismo , Estudio de Asociación del Genoma Completo , Humanos , Ratones , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Factores del Dominio POU/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo
5.
EMBO J ; 37(15)2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29903919

RESUMEN

Glioblastoma is the most common and aggressive brain tumor, with a subpopulation of stem-like cells thought to mediate its recurring behavior and therapeutic resistance. The epithelial-mesenchymal transition (EMT) inducing factor Zeb1 was linked to tumor initiation, invasion, and resistance to therapy in glioblastoma, but how Zeb1 functions at molecular level and what genes it regulates remain poorly understood. Contrary to the common view that EMT factors act as transcriptional repressors, here we show that genome-wide binding of Zeb1 associates with both activation and repression of gene expression in glioblastoma stem-like cells. Transcriptional repression requires direct DNA binding of Zeb1, while indirect recruitment to regulatory regions by the Wnt pathway effector Lef1 results in gene activation, independently of Wnt signaling. Amongst glioblastoma genes activated by Zeb1 are predicted mediators of tumor cell migration and invasion, including the guanine nucleotide exchange factor Prex1, whose elevated expression is predictive of shorter glioblastoma patient survival. Prex1 promotes invasiveness of glioblastoma cells in vivo highlighting the importance of Zeb1/Lef1 gene regulatory mechanisms in gliomagenesis.


Asunto(s)
Glioblastoma/genética , Glioblastoma/patología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factor de Unión 1 al Potenciador Linfoide/genética , Vía de Señalización Wnt/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Movimiento Celular/genética , Proteínas de Unión al ADN/genética , Transición Epitelial-Mesenquimal/genética , Glioblastoma/mortalidad , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Invasividad Neoplásica/genética , Transcripción Genética/genética , Activación Transcripcional/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo
6.
Bull Math Biol ; 81(4): 1031-1069, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30552628

RESUMEN

RNA viruses comprise vast populations of closely related, but highly genetically diverse, entities known as quasispecies. Understanding the mechanisms by which this extreme diversity is generated and maintained is fundamental when approaching viral persistence and pathobiology in infected hosts. In this paper, we access quasispecies theory through a mathematical model based on the theory of multitype branching processes, to better understand the roles of mechanisms resulting in viral diversity, persistence and extinction. We accomplish this understanding by a combination of computational simulations and the theoretical analysis of the model. In order to perform the simulations, we have implemented the mathematical model into a computational platform capable of running simulations and presenting the results in a graphical format in real time. Among other things, we show that the establishment of virus populations may display four distinct regimes from its introduction into new hosts until achieving equilibrium or undergoing extinction. Also, we were able to simulate different fitness distributions representing distinct environments within a host which could either be favorable or hostile to the viral success. We addressed the most used mechanisms for explaining the extinction of RNA virus populations called lethal mutagenesis and mutational meltdown. We were able to demonstrate a correspondence between these two mechanisms implying the existence of a unifying principle leading to the extinction of RNA viruses.


Asunto(s)
Evolución Molecular , Modelos Genéticos , Virus ARN/genética , Simulación por Computador , Extinción Biológica , Variación Genética , Humanos , Conceptos Matemáticos , Mutación , Fenotipo , Virus ARN/patogenicidad , Virus ARN/fisiología , Programas Informáticos , Procesos Estocásticos , Mutaciones Letales Sintéticas , Replicación Viral/genética
7.
Genes Dev ; 25(9): 930-45, 2011 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-21536733

RESUMEN

Proneural genes such as Ascl1 are known to promote cell cycle exit and neuronal differentiation when expressed in neural progenitor cells. The mechanisms by which proneural genes activate neurogenesis--and, in particular, the genes that they regulate--however, are mostly unknown. We performed a genome-wide characterization of the transcriptional targets of Ascl1 in the embryonic brain and in neural stem cell cultures by location analysis and expression profiling of embryos overexpressing or mutant for Ascl1. The wide range of molecular and cellular functions represented among these targets suggests that Ascl1 directly controls the specification of neural progenitors as well as the later steps of neuronal differentiation and neurite outgrowth. Surprisingly, Ascl1 also regulates the expression of a large number of genes involved in cell cycle progression, including canonical cell cycle regulators and oncogenic transcription factors. Mutational analysis in the embryonic brain and manipulation of Ascl1 activity in neural stem cell cultures revealed that Ascl1 is indeed required for normal proliferation of neural progenitors. This study identified a novel and unexpected activity of the proneural gene Ascl1, and revealed a direct molecular link between the phase of expansion of neural progenitors and the subsequent phases of cell cycle exit and neuronal differentiation.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis , Telencéfalo/citología , Telencéfalo/embriología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular , Línea Celular , Proliferación Celular , Células Cultivadas , Femenino , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Estudio de Asociación del Genoma Completo , Ratones , Embarazo
8.
Genome Res ; 25(1): 41-56, 2015 01.
Artículo en Inglés | MEDLINE | ID: mdl-25294244

RESUMEN

The gene regulatory network (GRN) that supports neural stem cell (NS cell) self-renewal has so far been poorly characterized. Knowledge of the central transcription factors (TFs), the noncoding gene regulatory regions that they bind to, and the genes whose expression they modulate will be crucial in unlocking the full therapeutic potential of these cells. Here, we use DNase-seq in combination with analysis of histone modifications to identify multiple classes of epigenetically and functionally distinct cis-regulatory elements (CREs). Through motif analysis and ChIP-seq, we identify several of the crucial TF regulators of NS cells. At the core of the network are TFs of the basic helix-loop-helix (bHLH), nuclear factor I (NFI), SOX, and FOX families, with CREs often densely bound by several of these different TFs. We use machine learning to highlight several crucial regulatory features of the network that underpin NS cell self-renewal and multipotency. We validate our predictions by functional analysis of the bHLH TF OLIG2. This TF makes an important contribution to NS cell self-renewal by concurrently activating pro-proliferation genes and preventing the untimely activation of genes promoting neuronal differentiation and stem cell quiescence.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/citología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular , Células Cultivadas , Análisis por Conglomerados , Epigenómica , Modelos Logísticos , Ratones , Análisis por Micromatrices , Modelos Teóricos , Factores de Transcripción NFI/genética , Factores de Transcripción NFI/metabolismo , Proteínas del Tejido Nervioso/genética , Factor de Transcripción 2 de los Oligodendrocitos , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción SOX/genética , Factores de Transcripción SOX/metabolismo , Análisis de Secuencia de ADN
9.
Development ; 141(14): 2803-12, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24924197

RESUMEN

The proper balance of excitatory and inhibitory neurons is crucial for normal processing of somatosensory information in the dorsal spinal cord. Two neural basic helix-loop-helix transcription factors (TFs), Ascl1 and Ptf1a, have contrasting functions in specifying these neurons. To understand how Ascl1 and Ptf1a function in this process, we identified their direct transcriptional targets genome-wide in the embryonic mouse neural tube using ChIP-Seq and RNA-Seq. We show that Ascl1 and Ptf1a directly regulate distinct homeodomain TFs that specify excitatory or inhibitory neuronal fates. In addition, Ascl1 directly regulates genes with roles in several steps of the neurogenic program, including Notch signaling, neuronal differentiation, axon guidance and synapse formation. By contrast, Ptf1a directly regulates genes encoding components of the neurotransmitter machinery in inhibitory neurons, and other later aspects of neural development distinct from those regulated by Ascl1. Moreover, Ptf1a represses the excitatory neuronal fate by directly repressing several targets of Ascl1. Ascl1 and Ptf1a bind sequences primarily enriched for a specific E-Box motif (CAGCTG) and for secondary motifs used by Sox, Rfx, Pou and homeodomain factors. Ptf1a also binds sequences uniquely enriched in the CAGATG E-box and in the binding motif for its co-factor Rbpj, providing two factors that influence the specificity of Ptf1a binding. The direct transcriptional targets identified for Ascl1 and Ptf1a provide a molecular understanding of how these DNA-binding proteins function in neuronal development, particularly as key regulators of homeodomain TFs required for neuronal subtype specification.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Redes Reguladoras de Genes , Inhibición Neural , Neuronas/metabolismo , Médula Espinal/citología , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Sitios de Unión , Tipificación del Cuerpo/genética , Pollos , Cromatina/metabolismo , Elementos E-Box/genética , Neuronas GABAérgicas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genoma/genética , Glutamatos/metabolismo , Ratones , Datos de Secuencia Molecular , Tubo Neural/citología , Tubo Neural/embriología , Tubo Neural/metabolismo , Neurogénesis/genética , Neuronas/citología , Motivos de Nucleótidos/genética , Unión Proteica , Médula Espinal/embriología
10.
BMC Microbiol ; 16(1): 193, 2016 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-27558582

RESUMEN

BACKGROUND: Multi-drug resistant forms of Pseudomonas aeruginosa (MDRPA) are a major source of nosocomial infections and when discharged into streams and rivers from hospital wastewater treatment plants (HWWTP) they are known to be able to persist for extended periods. In the city of Manaus (Western Brazilian Amazon), the effluent of three HWWTPs feed into the urban Mindu stream which crosses the city from its rainforest source before draining into the Rio Negro. The stream is routinely used by Manaus residents for bathing and cleaning (of clothes as well as domestic utensils) and, during periods of flooding, can contaminate wells used for drinking water. RESULTS: 16S rRNA metagenomic sequence analysis of 293 cloned PCR fragments, detected an abundance of Pseudomonas aeruginosa (P. aeruginosa) at the stream's Rio Negro drainage site, but failed to detect it at the stream's source. An array of antimicrobial resistance profiles and resistance to all 14 tested antimicrobials was detected among P. aeruginosa cultures prepared from wastewater samples taken from water entering and being discharged from a Manaus HWWTP. Just one P. aeruginosa antimicrobial resistance profile, however, was detected from cultures made from Mindu stream isolates. Comparisons made between P. aeruginosa isolates' genomic DNA restriction enzyme digest fingerprints, failed to determine if any of the P. aeruginosa found in the Mindu stream were of HWWTP origin, but suggested that Mindu stream P. aeruginosa are from diverse origins. Culturing experiments also showed that P. aeruginosa biofilm formation and the extent of biofilm formation produced were both significantly higher in multi drug resistant forms of P. aeruginosa. CONCLUSIONS: Our results show that a diverse range of MDRPA are being discharged in an urban stream from a HWWTP in Manaus and that P. aeruginosa strains with ampicillin and amikacin can persist well within it.


Asunto(s)
Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/aislamiento & purificación , Ríos/microbiología , Aguas Residuales/microbiología , Amicacina/farmacología , Ampicilina/farmacología , Antibacterianos/farmacología , Biodiversidad , Biopelículas , Brasil , Dermatoglifia del ADN , Farmacorresistencia Bacteriana Múltiple , Electroforesis en Gel de Campo Pulsado , Hospitales , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa/fisiología , ARN Ribosómico 16S/genética
11.
Cereb Cortex ; 25(3): 806-16, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24084125

RESUMEN

The zinc finger transcription factor RP58 (also known as ZNF238) regulates neurogenesis of the mouse neocortex and cerebellum (Okado et al. 2009; Xiang et al. 2011; Baubet et al. 2012; Ohtaka-Maruyama et al. 2013), but its mechanism of action remains unclear. In this study, we report a cell-autonomous function for RP58 during the differentiation of embryonic cortical projection neurons via its activities as a transcriptional repressor. Disruption of RP58 expression alters the differentiation of immature neurons and impairs their migration and positioning within the mouse cerebral cortex. Loss of RP58 within the embryonic cortex also leads to elevated mRNA for Rnd2, a member of the Rnd family of atypical RhoA-like GTPase proteins important for cortical neuron migration (Heng et al. 2008). Mechanistically, RP58 represses transcription of Rnd2 via binding to a 3'-regulatory enhancer in a sequence-specific fashion. Using reporter assays, we found that RP58 repression of Rnd2 is competed by proneural basic helix-loop-helix transcriptional activators. Finally, our rescue experiments revealed that negative regulation of Rnd2 by RP58 was important for cortical cell migration in vivo. Taken together, these studies demonstrate that RP58 is a key player in the transcriptional control of cell migration in the developing cerebral cortex.


Asunto(s)
Movimiento Celular/genética , Corteza Cerebral/embriología , Corteza Cerebral/fisiología , Neuronas/metabolismo , Proteínas Represoras/genética , Proteínas de Unión al GTP rho/genética , Animales , Proliferación Celular/genética , Corteza Cerebral/metabolismo , Femenino , Masculino , Ratones , Ratones Noqueados
15.
BMC Microbiol ; 15: 272, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26627076

RESUMEN

BACKGROUND: Chromobacterium violaceum (C. violaceum) occurs abundantly in a variety of ecosystems, including ecosystems that place the bacterium under stress. This study assessed the adaptability of C. violaceum by submitting it to nutritional and pH stresses and then analyzing protein expression using bi-dimensional electrophoresis (2-DE) and Maldi mass spectrometry. RESULTS: Chromobacterium violaceum grew best in pH neutral, nutrient-rich medium (reference conditions); however, the total protein mass recovered from stressed bacteria cultures was always higher than the total protein mass recovered from our reference culture. The diversity of proteins expressed (repressed by the number of identifiable 2-DE spots) was seen to be highest in the reference cultures, suggesting that stress reduces the overall range of proteins expressed by C. violaceum. Database comparisons allowed 43 of the 55 spots subjected to Maldi mass spectrometry to be characterized as containing a single identifiable protein. Stress-related expression changes were noted for C. violaceum proteins related to the previously characterized bacterial proteins: DnaK, GroEL-2, Rhs, EF-Tu, EF-P; MCP, homogentisate 1,2-dioxygenase, Arginine deiminase and the ATP synthase ß-subunit protein as well as for the ribosomal protein subunits L1, L3, L5 and L6. The ability of C. violaceum to adapt its cellular mechanics to sub-optimal growth and protein production conditions was well illustrated by its regulation of ribosomal protein subunits. With the exception of the ribosomal subunit L3, which plays a role in protein folding and maybe therefore be more useful in stressful conditions, all the other ribosomal subunit proteins were seen to have reduced expression in stressed cultures. Curiously, C. violeaceum cultures were also observed to lose their violet color under stress, which suggests that the violacein pigment biosynthetic pathway is affected by stress. CONCLUSIONS: Analysis of the proteomic signatures of stressed C. violaceum indicates that nutrient-starvation and pH stress can cause changes in the expression of the C. violaceum receptors, transporters, and proteins involved with biosynthetic pathways, molecule recycling, energy production. Our findings complement the recent publication of the C. violeaceum genome sequence and could help with the future commercial exploitation of C. violeaceum.


Asunto(s)
Proteínas Bacterianas/metabolismo , Chromobacterium/crecimiento & desarrollo , Chromobacterium/metabolismo , Proteómica/métodos , Vías Biosintéticas , Medios de Cultivo/química , Regulación Bacteriana de la Expresión Génica , Concentración de Iones de Hidrógeno , Proteínas Ribosómicas/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Estrés Fisiológico
16.
Nucleic Acids Res ; 41(11): 5555-68, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23595148

RESUMEN

Accurately characterizing transcription factor (TF)-DNA affinity is a central goal of regulatory genomics. Although thermodynamics provides the most natural language for describing the continuous range of TF-DNA affinity, traditional motif discovery algorithms focus instead on classification paradigms that aim to discriminate 'bound' and 'unbound' sequences. Moreover, these algorithms do not directly model the distribution of tags in ChIP-seq data. Here, we present a new algorithm named Thermodynamic Modeling of ChIP-seq (TherMos), which directly estimates a position-specific binding energy matrix (PSEM) from ChIP-seq/exo tag profiles. In cross-validation tests on seven genome-wide TF-DNA binding profiles, one of which we generated via ChIP-seq on a complex developing tissue, TherMos predicted quantitative TF-DNA binding with greater accuracy than five well-known algorithms. We experimentally validated TherMos binding energy models for Klf4 and Esrrb, using a novel protocol to measure PSEMs in vitro. Strikingly, our measurements revealed strong non-additivity at multiple positions within the two PSEMs. Among the algorithms tested, only TherMos was able to model the entire binding energy landscape of Klf4 and Esrrb. Our study reveals new insights into the energetics of TF-DNA binding in vivo and provides an accurate first-principles approach to binding energy inference from ChIP-seq and ChIP-exo data.


Asunto(s)
Algoritmos , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/metabolismo , Animales , Inmunoprecipitación de Cromatina , Secuenciación de Nucleótidos de Alto Rendimiento , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Mutación , Unión Proteica , Receptores de Estrógenos/metabolismo , Análisis de Secuencia de ADN , Termodinámica
18.
Nature ; 455(7209): 114-8, 2008 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-18690213

RESUMEN

Motility is a universal property of newly generated neurons. How cell migration is coordinately regulated with other aspects of neuron production is not well understood. Here we show that the proneural protein neurogenin 2 (Neurog2), which controls neurogenesis in the embryonic cerebral cortex, directly induces the expression of the small GTP-binding protein Rnd2 (ref. 3) in newly generated mouse cortical neurons before they initiate migration. Rnd2 silencing leads to a defect in radial migration of cortical neurons similar to that observed when the Neurog2 gene is deleted. Remarkably, restoring Rnd2 expression in Neurog2-mutant neurons is sufficient to rescue their ability to migrate. Our results identify Rnd2 as a novel essential regulator of neuronal migration in the cerebral cortex and demonstrate that Rnd2 is a major effector of Neurog2 function in the promotion of migration. Thus, a proneural protein controls the complex cellular behaviour of cell migration through a remarkably direct pathway involving the transcriptional activation of a small GTP-binding protein.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Movimiento Celular , Corteza Cerebral/citología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Neuronas/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Regiones no Traducidas 3'/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Forma de la Célula , Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Elementos de Facilitación Genéticos/genética , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Ratones , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Interferencia de ARN , Proteínas de Unión al GTP rho/deficiencia , Proteínas de Unión al GTP rho/genética
19.
Bull Math Biol ; 75(4): 602-28, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23413154

RESUMEN

In this paper, we revisit and adapt to viral evolution an approach based on the theory of branching process advanced by Demetrius et al. (Bull. Math. Biol. 46:239-262, 1985), in their study of polynucleotide evolution. By taking into account beneficial effects, we obtain a non-trivial multivariate generalization of their single-type branching process model. Perturbative techniques allows us to obtain analytical asymptotic expressions for the main global parameters of the model, which lead to the following rigorous results: (i) a new criterion for "no sure extinction", (ii) a generalization and proof, for this particular class of models, of the lethal mutagenesis criterion proposed by Bull et al. (J. Virol. 18:2930-2939, 2007), (iii) a new proposal for the notion of relaxation time with a quantitative prescription for its evaluation, (iv) the quantitative description of the evolution of the expected values in four distinct "stages": extinction threshold, lethal mutagenesis, stationary "equilibrium", and transient. Finally, based on these quantitative results, we are able to draw some qualitative conclusions.


Asunto(s)
Evolución Molecular , Modelos Genéticos , Polinucleótidos/genética , Replicación Viral/genética , Procesos Estocásticos
20.
Development ; 136(22): 3767-77, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19855019

RESUMEN

The characterisation of interspecies differences in gene regulation is crucial to understanding the molecular basis of phenotypic diversity and evolution. The atonal homologue Atoh7 participates in the ontogenesis of the vertebrate retina. Our study reveals how evolutionarily conserved, non-coding DNA sequences mediate both the conserved and the species-specific transcriptional features of the Atoh7 gene. In the mouse and chick retina, species-related variations in the chromatin-binding profiles of bHLH transcription factors correlate with distinct features of the Atoh7 promoters and underlie variations in the transcriptional rates of the Atoh7 genes. The different expression kinetics of the Atoh7 genes generate differences in the expression patterns of a set of genes that are regulated by Atoh7 in a dose-dependent manner, including those involved in neurite outgrowth and growth cone migration. In summary, we show how highly conserved regulatory elements are put to use in mediating non-conserved functions and creating interspecies neuronal diversity.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas del Tejido Nervioso/metabolismo , Retina/embriología , Animales , Embrión de Pollo , Cromatina/metabolismo , Embrión de Mamíferos/metabolismo , Ratones , Neuritas/metabolismo , Elementos Reguladores de la Transcripción , Retina/metabolismo , Células Ganglionares de la Retina/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda