RESUMEN
Metastasis is the primary cause of treatment failures and mortality in most cancers. Triple-negative breast cancer (TNBC) is refractory to treatment and rapidly progresses to disseminated disease. We utilized an orthotopic mouse model that molecularly and phenotypically resembles human TNBC to study the effects of exogenous, daily tissue inhibitor of metalloproteinase-2 (TIMP-2) treatment on tumor growth and metastasis. Our results demonstrated that TIMP-2 treatment maximally suppressed primary tumor growth by ~36-50% and pulmonary metastasis by >92%. Immunostaining assays confirmed disruption of the epithelial to mesenchymal transition (EMT) and promotion of vascular integrity in primary tumor tissues. Immunostaining and RNA sequencing analysis of lung tissue lysates from tumor-bearing mice identified significant changes associated with metastatic colony formation. Specifically, TIMP-2 treatment disrupts periostin localization and critical cell-signaling pathways, including canonical Wnt signaling involved in EMT, as well as PI3K signaling, which modulates proliferative and metastatic behavior through p27 phosphorylation/localization. In conclusion, our study provides evidence in support of a role for TIMP-2 in suppression of triple-negative breast cancer growth and metastasis through modulation of the epithelial to mesenchymal transition, vascular normalization, and signaling pathways associated with metastatic outgrowth. Our findings suggest that TIMP-2, a constituent of the extracellular matrix in normal tissues, may have both direct and systemic antitumor and metastasis suppressor effects, suggesting potential utility in the clinical management of breast cancer progression.
Asunto(s)
Carcinogénesis/genética , Proliferación Celular/genética , Inhibidor Tisular de Metaloproteinasa-2/genética , Neoplasias de la Mama Triple Negativas/genética , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Modelos Animales de Enfermedad , Transición Epitelial-Mesenquimal/genética , Femenino , Humanos , Metástasis de la Neoplasia , Fosfatidilinositol 3-Quinasas , Análisis de Secuencia de ARN , Neoplasias de la Mama Triple Negativas/patología , Vía de Señalización Wnt/genética , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Selenophosphate synthetase (SPS) was initially detected in bacteria and was shown to synthesize selenophosphate, the active selenium donor. However, mammals have two SPS paralogues, which are designated SPS1 and SPS2. Although it is known that SPS2 catalyses the synthesis of selenophosphate, the function of SPS1 remains largely unclear. To examine the role of SPS1 in mammals, we generated a Sps1-knockout mouse and found that systemic SPS1 deficiency led to embryos that were clearly underdeveloped by embryonic day (E)8.5 and virtually resorbed by E14.5. The knockout of Sps1 in the liver preserved viability, but significantly affected the expression of a large number of mRNAs involved in cancer, embryonic development and the glutathione system. Particularly notable was the extreme deficiency of glutaredoxin 1 (GLRX1) and glutathione transferase Omega 1 (GSTO1). To assess these phenotypes at the cellular level, we targeted the removal of SPS1 in F9 cells, a mouse embryonal carcinoma (EC) cell line, which affected the glutathione system proteins and accordingly led to the accumulation of hydrogen peroxide in the cell. Furthermore, we found that several malignant characteristics of SPS1-deficient F9 cells were reversed, suggesting that SPS1 played a role in supporting and/or sustaining cancer. In addition, the overexpression of mouse or human GLRX1 led to a reversal of observed increases in reactive oxygen species (ROS) in the F9 SPS1/GLRX1-deficient cells and resulted in levels that were similar to those in F9 SPS1-sufficient cells. The results suggested that SPS1 is an essential mammalian enzyme with roles in regulating redox homoeostasis and controlling cell growth.
Asunto(s)
Fosfotransferasas/metabolismo , Animales , Línea Celular , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Glutatión/metabolismo , Disulfuro de Glutatión/metabolismo , Homeostasis/genética , Homeostasis/fisiología , Humanos , Hígado/metabolismo , Ratones , Ratones Noqueados , Oxidación-Reducción , Fosfotransferasas/genética , Fosfato de Piridoxal/metabolismoRESUMEN
Cancer has been considered as temporal and spatial aberrations of normal development in tissues. Similarities between mammary embryonic development and cell transformation suggest that the underlying processes required for mammary gland development are also those perturbed during various stages of mammary tumorigenesis and breast cancer (BC) development. The master regulators of embryonic development Cripto-1, Notch/CSL, and Wnt/ß-catenin play key roles in modulating mammary gland morphogenesis and cell fate specification in the embryo through fetal mammary stem cells (fMaSC) and in the adult organism particularly within the adult mammary stem cells (aMaSC), which determine mammary progenitor cell lineages that generate the basal/myoepithelial and luminal compartments of the adult mammary gland. Together with recognized transcription factors and embryonic stem cell markers, these embryonic regulatory molecules can be inappropriately augmented during tumorigenesis to support the tumor-initiating cell (TIC)/cancer stem cell (CSC) compartment, and the effects of their deregulation may contribute for the etiology of BC, in particular the most aggressive subtype of BC, triple-negative breast cancer (TNBC). This in depth review will present evidence of the involvement of Cripto-1, Notch/CSL, and Wnt/ß-catenin in the normal mammary gland morphogenesis and tumorigenesis, from fMaSC/aMaSC regulation to TIC generation and maintenance in TNBC. Specific therapies for treating TNBC by targeting these embryonic pathways in TICs will be further discussed, providing new opportunities to destroy not only the bulk tumor, but also TICs that initiate and promote the metastatic spread and recurrence of this aggressive subtype of BC.
Asunto(s)
Glándulas Mamarias Humanas/crecimiento & desarrollo , Células Madre Neoplásicas/metabolismo , Transducción de Señal , Neoplasias de la Mama Triple Negativas/etiología , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Glándulas Mamarias Humanas/efectos de los fármacos , Glándulas Mamarias Humanas/metabolismo , Glándulas Mamarias Humanas/patología , Células Madre Neoplásicas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patologíaRESUMEN
Cripto-1, a member of the epidermal growth factor-Cripto-1/FRL-1/Cryptic family, is critical for early embryonic development. Together with its ligand Nodal, Cripto-1 has been found to be associated with the undifferentiated status of mouse and human embryonic stem cells. Several studies have clearly shown that Cripto-1 is involved in regulating branching morphogenesis and epithelial-mesenchymal transition of the mammary gland both in vitro and in vivo and together with the cofactor GRP78 is critical for the maintenance of mammary stem cells ex vivo. Our previous studies showed that mammary-specific overexpression of human Cripto-1 exhibited dramatic morphological alterations in nulliparous mice mammary glands. The present study shows a novel mechanism for Cripto-1 regulation of mammary gland development through direct effects on progesterone receptor expression and pathways regulated by progesterone in the mammary gland. We demonstrate a strict temporal regulation of mouse Cripto-1 (mCripto-1) expression that occurs during mammary gland development and a stage-specific function of mCripto-1 signaling during mammary gland development. Our data suggest that Cripto-1, like the progesterone receptor, is not required for the initial ductal growth but is essential for subsequent side branching and alveologenesis during the initial stages of pregnancy. Dissection of the mechanism by which this occurs indicates that mCripto-1 activates receptor activator NF-κB/receptor activator NF-κB ligand, and NF-κB signaling pathways.
Asunto(s)
Factor de Crecimiento Epidérmico/metabolismo , Glicoproteínas de Membrana/metabolismo , Subunidad p50 de NF-kappa B/metabolismo , Proteínas de Neoplasias/metabolismo , Ligando RANK/metabolismo , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Receptores de Progesterona/metabolismo , Transducción de Señal , Animales , Proliferación Celular , Chaperón BiP del Retículo Endoplásmico , Factor de Crecimiento Epidérmico/genética , Células Epiteliales , Transición Epitelial-Mesenquimal , Femenino , Humanos , Glándulas Mamarias Animales/citología , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Modelos Biológicos , Subunidad p50 de NF-kappa B/genética , Proteínas de Neoplasias/genética , Especificidad de Órganos , Embarazo , Ligando RANK/genética , Receptor Activador del Factor Nuclear kappa-B/genética , Receptores de Progesterona/genéticaRESUMEN
Cripto-1 (CR-1)/Teratocarcinoma-derived growth factor1 (TDGF-1) is a cell surface glycosylphosphatidylinositol (GPI)-linked glycoprotein that can function either in cis (autocrine) or in trans (paracrine). The cell membrane cis form is found in lipid rafts and endosomes while the trans acting form lacking the GPI anchor is soluble. As a member of the epidermal growth factor (EGF)/Cripto-1-FRL-1-Cryptic (CFC) family, CR-1 functions as an obligatory co-receptor for the transforming growth factor-ß (TGF-ß) family members, Nodal and growth and differentiation factors 1 and 3 (GDF1/3) by activating Alk4/Alk7 signaling pathways that involve Smads 2, 3 and 4. In addition, CR-1 can activate non-Smad-dependent signaling elements such as PI3K, Akt and MAPK. Both of these pathways depend upon the 78kDa glucose regulated protein (GRP78). Finally, CR-1 can facilitate signaling through the canonical Wnt/ß-catenin and Notch/Cbf-1 pathways by functioning as a chaperone protein for LRP5/6 and Notch, respectively. CR-1 is essential for early embryonic development and maintains embryonic stem cell pluripotentiality. CR-1 performs an essential role in the etiology and progression of several types of human tumors where it is expressed in a population of cancer stem cells (CSCs) and facilitates epithelial-mesenchymal transition (EMT). In this context, CR-1 can significantly enhance tumor cell migration, invasion and angiogenesis. Collectively, these facts suggest that CR-1 may be an attractive target in the diagnosis, prognosis and therapy of several types of human cancer.
Asunto(s)
Transición Epitelial-Mesenquimal/genética , Proteínas Ligadas a GPI/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Invasividad Neoplásica/genética , Proteínas de Neoplasias/genética , Neoplasias/genética , Neovascularización Patológica/genética , Receptores de Activinas Tipo I/metabolismo , Membrana Celular/metabolismo , Chaperón BiP del Retículo Endoplásmico , Proteínas de Choque Térmico/metabolismo , Humanos , Proteínas de la Membrana/genética , Neoplasias/patología , Células Madre Neoplásicas/citología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Notch/metabolismo , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Proteína Smad4/metabolismo , Proteínas de la Superfamilia TGF-beta/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Wnt/metabolismo , Vía de Señalización Wnt/genética , beta Catenina/metabolismoRESUMEN
Cripto-1 (CR-1) is a multifunctional embryonic protein that is re-expressed during inflammation, wound repair, and malignant transformation. CR-1 can function either as a tethered co-receptor or shed as a free ligand underpinning its flexible role in cell physiology. CR-1 has been shown to mediate cell growth, migration, invasion, and induce epithelial to mesenchymal transition (EMT). The main signaling pathways mediating CR-1 effects include Nodal-dependent (Smad2/3) and Nodal-independent (Src/p44/42/Akt) signaling transduction pathways. In addition, there are several naturally occurring binding partner proteins (BPPs) for CR-1 that can either agonize or antagonize its bioactivity. We will review the collective role of CR-1 as an extracellular protein, discuss caveats to consider in developing a quantitation assay, define possible mechanistic avenues applicable for drug discovery, and report on our experimental approaches to overcome these problematic issues.
Asunto(s)
Transición Epitelial-Mesenquimal/fisiología , Proteínas Ligadas a GPI/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de Neoplasias/metabolismo , Transducción de Señal/fisiología , Autoanticuerpos/inmunología , Factor de Crecimiento Epidérmico/fisiología , Transición Epitelial-Mesenquimal/inmunología , Espacio Extracelular/metabolismo , Humanos , Transducción de Señal/inmunología , Factor de Crecimiento Transformador beta/metabolismoRESUMEN
Human Cripto-1 (CR-1) plays an important role in regulating embryonic development while also regulating various stages of tumor progression. However, mechanisms that regulate CR-1 expression during embryogenesis and tumorigenesis are still not well defined. In the present study, we investigated the effects of two nuclear receptors, liver receptor homolog (LRH)-1 and germ cell nuclear factor receptor (GCNF) and epigenetic modifications on CR-1 gene expression in NTERA-2 human embryonal carcinoma cells and in breast cancer cells. CR-1 expression in NTERA-2 cells was positively regulated by LRH-1 through direct binding to a DR0 element within the CR-1 promoter, while GCNF strongly suppressed CR-1 expression in these cells. In addition, the CR-1 promoter was unmethylated in NTERA-2 cells, while T47D, ZR75-1, and MCF7 breast cancer cells showed high levels of CR-1 promoter methylation and low CR-1 mRNA and protein expression. Treatment of breast cancer cells with a demethylating agent and histone deacetylase inhibitors reduced methylation of the CR-1 promoter and reactivated CR-1 mRNA and protein expression in these cells, promoting migration and invasion of breast cancer cells. Analysis of a breast cancer tissue array revealed that CR-1 was highly expressed in the majority of human breast tumors, suggesting that CR-1 expression in breast cancer cell lines might not be representative of in vivo expression. Collectively, these findings offer some insight into the transcriptional regulation of CR-1 gene expression and its critical role in the pathogenesis of human cancer.
Asunto(s)
Neoplasias de la Mama/metabolismo , Carcinoma Ductal de Mama/metabolismo , Carcinoma Embrionario/metabolismo , Metilación de ADN , Proteínas Ligadas a GPI/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de Neoplasias/metabolismo , Miembro 1 del Grupo A de la Subfamilia 6 de Receptores Nucleares/metabolismo , Regiones Promotoras Genéticas , Receptores Citoplasmáticos y Nucleares/metabolismo , Azacitidina/análogos & derivados , Azacitidina/farmacología , Sitios de Unión , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/patología , Carcinoma Embrionario/genética , Carcinoma Embrionario/patología , Movimiento Celular , Metilación de ADN/efectos de los fármacos , Metilasas de Modificación del ADN/antagonistas & inhibidores , Metilasas de Modificación del ADN/metabolismo , Decitabina , Relación Dosis-Respuesta a Droga , Células Madre de Carcinoma Embrionario/metabolismo , Células Madre de Carcinoma Embrionario/patología , Femenino , Proteínas Ligadas a GPI/genética , Regulación del Desarrollo de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Genes Reporteros , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Ácidos Hidroxámicos/farmacología , Péptidos y Proteínas de Señalización Intercelular/genética , Luciferasas/biosíntesis , Luciferasas/genética , Células MCF-7 , Invasividad Neoplásica , Proteínas de Neoplasias/genética , Miembro 1 del Grupo A de la Subfamilia 6 de Receptores Nucleares/genética , Interferencia de ARN , ARN Mensajero/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Factores de Tiempo , Análisis de Matrices Tisulares , Transcripción Genética , Transfección , Tretinoina/farmacología , Ácido Valproico/farmacologíaRESUMEN
Epithelial-to-mesenchymal transition (EMT) is a critical multistep process that converts epithelial cells to more motile and invasive mesenchymal cells, contributing to body patterning and morphogenesis during embryonic development. In addition, both epithelial plasticity and increased motility and invasiveness are essential for the branching morphogenesis that occurs during development of the mammary gland and during tumor formation, allowing cancer cells to escape from the primary tumor. Cripto-1, a member of the epidermal growth factor-Cripto-1/FRL-1/Cryptic (EGF/CFC) gene family, together with the transforming growth factor (TGF)-ß family ligand Nodal, regulates both cell movement and EMT during embryonic development. During postnatal development, Cripto-1 regulates the branching morphogenesis of the mouse mammary gland and enhances both the invasive and migratory properties of mammary epithelial cells in vitro. Furthermore, transgenic mouse models have shown that Cripto-1 promotes the formation of mammary tumors that display properties of EMT, including the down-regulation of the cell surface adherens junctional protein E-cadherin and the up-regulation of mesenchymal markers, such as vimentin, N-cadherin, and Snail. Interestingly, Cripto-1 is enriched in a subpopulation of embryonal, melanoma, prostate, and pancreatic cancer cells that possess stem-like characteristics. Therefore, Cripto-1 may play a role during developmental EMT, and it may also be involved in the reprogramming of differentiated tumor cells into cancer stem cells through the induction of an EMT program.
Asunto(s)
Neoplasias de la Mama/metabolismo , Transformación Celular Neoplásica/metabolismo , Desarrollo Embrionario/fisiología , Transición Epitelial-Mesenquimal/fisiología , Proteínas Ligadas a GPI/fisiología , Péptidos y Proteínas de Señalización Intercelular/fisiología , Neoplasias Mamarias Experimentales/metabolismo , Proteínas de Neoplasias/fisiología , Animales , Transformación Celular Neoplásica/patología , Femenino , Proteínas Ligadas a GPI/genética , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Glándulas Mamarias Animales/embriología , Glándulas Mamarias Animales/crecimiento & desarrollo , Ratones , Proteínas de Neoplasias/genética , Transducción de Señal/fisiologíaRESUMEN
Cripto-1 is critical for early embryonic development and, together with its ligand Nodal, has been found to be associated with the undifferentiated status of mouse and human embryonic stem cells. Like other embryonic genes, Cripto-1 performs important roles in the formation and progression of several types of human tumors, stimulating cell proliferation, migration, epithelial to mesenchymal transition, and tumor angiogenesis. Several studies have demonstrated that cell fate regulation during embryonic development and cell transformation during oncogenesis share common signaling pathways, suggesting that uncontrolled activation of embryonic signaling pathways might drive cell transformation and tumor progression in adult tissues. Here we review our current understanding of how Cripto-1 controls stem cell biology and how it integrates with other major embryonic signaling pathways. Because many cancers are thought to derive from a subpopulation of cancer stem-like cells, which may re-express embryonic genes, Cripto-1 signaling may drive tumor growth through the generation or expansion of tumor initiating cells bearing stem-like characteristics. Therefore, the Cripto-1/Nodal signaling may represent an attractive target for treatment in cancer, leading to the elimination of undifferentiated stem-like tumor initiating cells.
Asunto(s)
Progresión de la Enfermedad , Factor de Crecimiento Epidérmico/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/patología , Células Madre/fisiología , Animales , Desarrollo Embrionario , Factor de Crecimiento Epidérmico/genética , Transición Epitelial-Mesenquimal , Proteínas Ligadas a GPI , Humanos , Hipoxia , Péptidos y Proteínas de Señalización Intercelular , Glicoproteínas de Membrana/genética , Proteínas de Neoplasias/genética , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Proteína Nodal/genética , Proteína Nodal/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Transducción de Señal/fisiología , Proteínas Wnt/genética , Proteínas Wnt/metabolismoRESUMEN
Triple-negative breast cancer (TNBC) represents the poorest prognosis among all of breast cancer subtypes with no currently available effective therapy. In this study, we hypothesized that sulforaphane, a dietary component abundant in broccoli and its sprouts, can inhibit malignant cell proliferation and tumor sphere formation of cancer stem-like cells (CSC) in TNBC. CSC population was isolated using FACS analysis with the combined stem cell surface markers, CD44+/CD24-/CD49f+ The effect of sulforaphane on a stem-related embryonic oncogene CRIPTO-1/TDGF1 (CR1) was evaluated via ELISA. In vivo, BalbC/nude mice were supplemented with sulforaphane before and after TNBC cell inoculation (daily intraperitoneal injection of 50 mg sulforaphane/kg for 5 and 3 weeks, respectively), and the effects of sulforaphane during mammary tumor initiation and growth were accessed with NanoString gene analysis. We found that sulforaphane can inhibit cell proliferation and mammosphere formation of CSCs in TNBC. Further analysis of gene expression in these TNBC tumor cells revealed that sulforaphane significantly decreases the expression of cancer-specific CR1, CRIPTO-3/TDGF1P3 (CR3, a homologue of CR1), and various stem cell markers including Nanog, aldehyde dehydrogenase 1A1 (ALDH1A1), Wnt3, and Notch4. Our results suggest that sulforaphane may control the malignant proliferation of CSCs in TNBC via Cripto-mediated pathway by either suppressing its expression and/or by inhibiting Cripto/Alk4 protein complex formation. Thus, the use of sulforaphane for chemoprevention of TNBC is plausible and warrants further clinical evaluation.
Asunto(s)
Anticarcinógenos/farmacología , Transformación Celular Neoplásica/efectos de los fármacos , Isotiocianatos/farmacología , Células Madre Neoplásicas/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Apoptosis , Proliferación Celular , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Femenino , Humanos , Técnicas In Vitro , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Sulfóxidos , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
INTRODUCTION: Ductal carcinoma in situ (DCIS) of the breast includes a heterogeneous group of preinvasive tumors with uncertain evolution. Definition of the molecular factors necessary for progression to invasive disease is crucial to determining which lesions are likely to become invasive. To obtain insight into the molecular basis of DCIS, we compared the gene expression pattern of cells from the following samples: non-neoplastic, pure DCIS, in situ component of lesions with co-existing invasive ductal carcinoma, and invasive ductal carcinoma. METHODS: Forty-one samples were evaluated: four non-neoplastic, five pure DCIS, 22 in situ component of lesions with co-existing invasive ductal carcinoma, and 10 invasive ductal carcinoma. Pure cell populations were isolated using laser microdissection. Total RNA was purified, DNase treated, and amplified using the T7-based method. Microarray analysis was conducted using a customized cDNA platform. The concept of molecular divergence was applied to classify the sample groups using analysis of variance followed by Tukey's test. RESULTS: Among the tumor sample groups, cells from pure DCIS exhibited the most divergent molecular profile, consequently identifying cells from in situ component of lesions with co-existing invasive ductal carcinoma as very similar to cells from invasive lesions. Additionally, we identified 147 genes that were differentially expressed between pure DCIS and in situ component of lesions with co-existing invasive ductal carcinoma, which can discriminate samples representative of in situ component of lesions with co-existing invasive ductal carcinoma from 60% of pure DCIS samples. A gene subset was evaluated using quantitative RT-PCR, which confirmed differential expression for 62.5% and 60.0% of them using initial and partial independent sample groups, respectively. Among these genes, LOX and SULF-1 exhibited features that identify them as potential participants in the malignant process of DCIS. CONCLUSIONS: We identified new genes that are potentially involved in the malignant transformation of DCIS, and our findings strongly suggest that cells from the in situ component of lesions with co-existing invasive ductal carcinoma exhibit molecular alterations that enable them to invade the surrounding tissue before morphological changes in the lesion become apparent.
Asunto(s)
Neoplasias de la Mama/patología , Carcinoma Ductal de Mama/patología , Carcinoma Intraductal no Infiltrante/patología , Perfilación de la Expresión Génica , Genes Relacionados con las Neoplasias , Proteínas de Neoplasias/biosíntesis , Adulto , Anciano , Neoplasias de la Mama/química , Neoplasias de la Mama/genética , Carcinoma Ductal de Mama/química , Carcinoma Ductal de Mama/genética , Carcinoma Intraductal no Infiltrante/química , Carcinoma Intraductal no Infiltrante/genética , Progresión de la Enfermedad , Femenino , Humanos , Microdisección , Persona de Mediana Edad , Invasividad Neoplásica/genética , Proteínas de Neoplasias/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteína-Lisina 6-Oxidasa/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética , ARN Neoplásico/biosíntesis , ARN Neoplásico/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sulfotransferasas/genética , Factores de TiempoRESUMEN
The mouse model characterized by spontaneous lung metastasis from JygMC (A) cells closely resembles the human triple negative breast cancer (TNBC) subtype. The primary tumors morphologically present both epithelial and spindle-like cells, but metastases in lung parenchyma display only adenocarcinoma properties. In the study of molecular signatures, laser capture microdissection (LCM) on frozen tissue sections was used to separate the following regions of interest: the epithelial-mesenchymal transition (EMT), mesenchymal-epithelial transition (MET), carcinoma, lung metastases, normal mammary gland and normal lung parenchyma. NanoString was selected for the study of molecular signatures in LCM targets as a reliable downstream gene expression platform allowing analysis of tissue lysates without RNA extraction and amplification. This chapter provides detailed protocols for the collection of tissue, LCM sample preparation and dissection, production of lysates, extraction, and quality control of RNA for NanoString analysis, as well as the methodology of Nanostring gene expression profiling experiment.
Asunto(s)
Captura por Microdisección con Láser/métodos , Neoplasias Pulmonares/genética , Neoplasias Mamarias Animales/genética , Nanotecnología/métodos , ARN Neoplásico/análisis , Animales , Femenino , Secciones por Congelación , Perfilación de la Expresión Génica , Neoplasias Pulmonares/secundario , Neoplasias Mamarias Animales/patología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , ARN Neoplásico/genética , ARN Neoplásico/aislamiento & purificaciónRESUMEN
Laser capture microdissection (LCM) of tissue is an established tool in medical research for collection of distinguished cell populations under direct microscopic visualization for molecular analysis. LCM samples have been successfully analyzed in a number of genomic and proteomic downstream molecular applications. However, LCM sample collection and preparation procedure has to be adapted to each downstream analysis platform. In this present manuscript we describe in detail the adaptation of LCM methodology for the collection and preparation of fresh frozen samples for NanoString analysis based on a study of a model of mouse mammary gland carcinoma and its lung metastasis. Our adaptation of LCM sample preparation and workflow to the requirements of the NanoString platform allowed acquiring samples with high RNA quality. The NanoString analysis of such samples provided sensitive detection of genes of interest and their associated molecular pathways. NanoString is a reliable gene expression analysis platform that can be effectively coupled with LCM.
Asunto(s)
Captura por Microdisección con Láser/métodos , Neoplasias Pulmonares/secundario , Neoplasias Mamarias Animales/patología , Nanotecnología/métodos , Animales , Secuencia de Bases , Línea Celular Tumoral , Secciones por Congelación/métodos , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Mamarias Animales/genética , Ratones Endogámicos BALB C , Ratones Desnudos , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Estabilidad del ARN , Reproducibilidad de los ResultadosRESUMEN
Triple-negative breast cancer (TNBC) presents the poorest prognosis among the breast cancer subtypes and no current standard therapy. Here, we performed an in-depth molecular analysis of a mouse model that establishes spontaneous lung metastasis from JygMC(A) cells. These primary tumors resembled the triple-negative breast cancer (TNBC) both phenotypically and molecularly. Morphologically, primary tumors presented both epithelial and spindle-like cells but displayed only adenocarcinoma-like features in lung parenchyma. The use of laser-capture microdissection combined with Nanostring mRNA and microRNA analysis revealed overexpression of either epithelial and miRNA-200 family or mesenchymal markers in adenocarcinoma and mesenchymal regions, respectively. Cripto-1, an embryonic stem cell marker, was present in spindle-like areas and its promoter showed activity in primary tumors. Cripto-1 knockout by the CRISPR-Cas9 system inhibited tumor growth and pulmonary metastasis. Our findings show characterization of a novel mouse model that mimics the TNBC and reveal Cripto-1 as a TNBC target hence may offer alternative treatment strategies for TNBC.
Asunto(s)
Transformación Celular Neoplásica/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Neoplasias Mamarias Experimentales/patología , Glicoproteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Animales , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/fisiología , Femenino , Técnica del Anticuerpo Fluorescente , Técnicas de Inactivación de Genes , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Captura por Microdisección con Láser , Neoplasias Mamarias Experimentales/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa , Neoplasias de la Mama Triple Negativas/metabolismoRESUMEN
Experiments were conducted to redirect mouse Embryonic Stem (ES) cells from a tumorigenic phenotype to a normal mammary epithelial phenotype in vivo. Mixing LacZ-labeled ES cells with normal mouse mammary epithelial cells at ratios of 1:5 and 1:50 in phosphate buffered saline and immediately inoculating them into epithelium-divested mammary fat pads of immune-compromised mice accomplished this. Our results indicate that tumorigenesis occurs only when normal mammary ductal growth is not achieved in the inoculated fat pads. When normal mammary gland growth occurs, we find ES cells (LacZ+) progeny interspersed with normal mammary cell progeny in the mammary epithelial structures. We demonstrate that these progeny, marked by LacZ expression, differentiate into multiple epithelial subtypes including steroid receptor positive luminal cells and myoepithelial cells indicating that the ES cells are capable of epithelial multipotency in this context but do not form teratomas. In addition, in secondary transplants, ES cell progeny proliferate, contribute apparently normal mammary progeny, maintain their multipotency and do not produce teratomas.
Asunto(s)
Comunicación Celular , Linaje de la Célula , Transformación Celular Neoplásica/patología , Microambiente Celular , Células Madre Embrionarias/patología , Células Epiteliales/patología , Glándulas Mamarias Animales/patología , Actinas/metabolismo , Animales , Comunicación Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Linaje de la Célula/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Transformación Celular Neoplásica/efectos de los fármacos , Transformación Celular Neoplásica/genética , Microambiente Celular/efectos de los fármacos , Microambiente Celular/genética , Quimera , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Receptor alfa de Estrógeno/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Factor Inhibidor de Leucemia/farmacología , Glándulas Mamarias Animales/crecimiento & desarrollo , Ratones , Receptores de Progesterona/metabolismo , Teratoma/enzimología , Teratoma/patología , beta-Galactosidasa/metabolismoRESUMEN
Cripto-1 is implicated in multiple cellular events, including cell proliferation, motility and angiogenesis, through the activation of an intricate network of signaling pathways. A crosstalk between Cripto-1 and the canonical Wnt/ß-catenin signaling pathway has been previously described. In fact, Cripto-1 is a downstream target gene of the canonical Wnt/ß-catenin signaling pathway in the embryo and in colon cancer cells and T-cell factor (Tcf)/lymphoid enhancer factor binding sites have been identified in the promoter and the first intronic region of the mouse and human Cripto-1 genes. We now demonstrate that Cripto-1 modulates signaling through the canonical Wnt/ß-catenin/Tcf pathway by binding to the Wnt co-receptors low-density lipoprotein receptor-related protein (LRP) 5 and LRP6, which facilitates Wnt3a binding to LRP5 and LRP6. Cripto-1 functionally enhances Wnt3a signaling through cytoplasmic stabilization of ß-catenin and elevated ß-catenin/Tcf transcriptional activation. Conversely, Wnt3a further increases Cripto-1 stimulation of migration, invasion and colony formation in soft agar of HC11 mouse mammary epithelial cells, indicating that Cripto-1 and the canonical Wnt/ß-catenin signaling co-operate in regulating motility and in vitro transformation of mammary epithelial cells.
Asunto(s)
Proteínas Ligadas a GPI/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Proteínas de Neoplasias/metabolismo , Vía de Señalización Wnt , Animales , Línea Celular , Movimiento Celular , Proteínas Ligadas a GPI/química , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intercelular/química , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/genética , Ratones , Proteínas de Neoplasias/química , Unión Proteica , Estructura Terciaria de Proteína , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Activación Transcripcional , Proteína Wnt3A/metabolismo , beta Catenina/metabolismoRESUMEN
Nodal and Notch signaling pathways play essential roles in vertebrate development. Through a yeast two-hybrid screening, we identified Notch3 as a candidate binding partner of the Nodal coreceptor Cripto-1. Coimmunoprecipitation analysis confirmed the binding of Cripto-1 with all four mammalian Notch receptors. Deletion analyses revealed that the binding of Cripto-1 and Notch1 is mediated by the Cripto-1/FRL-1/Cryptic domain of Cripto-1 and the C-terminal region of epidermal growth factor-like repeats of Notch1. Binding of Cripto-1 to Notch1 occurred mainly in the endoplasmic reticulum-Golgi network. Cripto-1 expression resulted in the recruitment of Notch1 protein into lipid raft microdomains and enhancement of the furin-like protein convertase-mediated proteolytic maturation of Notch1 (S1 cleavage). Enhanced S1 cleavage resulted in the sensitization to ligand-induced activation of Notch signaling. In addition, knockdown of Cripto-1 expression in human and mouse embryonal carcinoma cells desensitized the ligand-induced Notch signaling activation. These results suggest a novel role of Cripto-1 in facilitating the posttranslational maturation of Notch receptors.