Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Cell ; 184(13): 3376-3393.e17, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34043940

RESUMEN

We present a global atlas of 4,728 metagenomic samples from mass-transit systems in 60 cities over 3 years, representing the first systematic, worldwide catalog of the urban microbial ecosystem. This atlas provides an annotated, geospatial profile of microbial strains, functional characteristics, antimicrobial resistance (AMR) markers, and genetic elements, including 10,928 viruses, 1,302 bacteria, 2 archaea, and 838,532 CRISPR arrays not found in reference databases. We identified 4,246 known species of urban microorganisms and a consistent set of 31 species found in 97% of samples that were distinct from human commensal organisms. Profiles of AMR genes varied widely in type and density across cities. Cities showed distinct microbial taxonomic signatures that were driven by climate and geographic differences. These results constitute a high-resolution global metagenomic atlas that enables discovery of organisms and genes, highlights potential public health and forensic applications, and provides a culture-independent view of AMR burden in cities.


Asunto(s)
Farmacorresistencia Bacteriana/genética , Metagenómica , Microbiota/genética , Población Urbana , Biodiversidad , Bases de Datos Genéticas , Humanos
2.
Curr Microbiol ; 80(9): 297, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37490160

RESUMEN

Microorganisms are the most diverse life form on the planet and are critical for maintaining the geochemical cycles, especially in extreme environments. Bacterial communities are dynamic and respond directly to changes in abiotic conditions; among these communities, poly-extremophiles are particularly sensitive to perturbations due to their high specialization. Salar de Huasco is a high-altitude wetland located on the Chilean Altiplano exhibiting several conditions considered extreme for life, including negative water balance, extreme variations in temperature and pH values, high UV radiation, and the presence of various toxic metal(oids). However, previous reports have revealed a diverse bacterial community that has adapted to these conditions, here, we aimed to determine whether microbial community diversity and composition changed in response to geographical and seasonal variations. We found that there are significant differences in diversity, abundance, and composition in bacterial taxa that could be attributed to local geographical and seasonal variations, which in turn, can be associated with microbial traits. In conclusion, in this poly-extreme environment, small-scale changes can trigger significant changes in the microbial communities that maintain basic biogeochemical cycles. Further in depth analysis of microbial functionality and geo-ecological dynamics are necessary to better understand the relationships between seasonal changes and bacterial communities.


Asunto(s)
Microbiota , Humedales , Estaciones del Año , Geografía , Fenotipo
3.
Eur Respir J ; 60(1)2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34916264

RESUMEN

BACKGROUND: Bronchiolitis is not only the leading cause of hospitalisation in US infants but also a major risk factor for asthma development. Growing evidence supports clinical heterogeneity within bronchiolitis. Our objectives were to identify metatranscriptome profiles of infant bronchiolitis, and to examine their relationship with the host transcriptome and subsequent asthma development. METHODS: As part of a multicentre prospective cohort study of infants (age <1 year) hospitalised for bronchiolitis, we integrated virus and nasopharyngeal metatranscriptome (species-level taxonomy and function) data measured at hospitalisation. We applied network-based clustering approaches to identify metatranscriptome profiles. We then examined their association with the host transcriptome at hospitalisation and risk for developing asthma. RESULTS: We identified five metatranscriptome profiles of bronchiolitis (n=244): profile A: virusRSVmicrobiomecommensals; profile B: virusRSV/RV-Amicrobiome H.influenzae ; profile C: virusRSVmicrobiome S.pneumoniae ; profile D: virusRSVmicrobiome M.nonliquefaciens ; and profile E: virusRSV/RV-Cmicrobiome M.catarrhalis . Compared with profile A, profile B infants were characterised by a high proportion of eczema, Haemophilus influenzae abundance and enriched virulence related to antibiotic resistance. These profile B infants also had upregulated T-helper 17 and downregulated type I interferon pathways (false discovery rate (FDR) <0.005), and significantly higher risk for developing asthma (17.9% versus 38.9%; adjusted OR 2.81, 95% CI 1.11-7.26). Likewise, profile C infants were characterised by a high proportion of parental asthma, Streptococcus pneumoniae dominance, and enriched glycerolipid and glycerophospholipid metabolism of the microbiome. These profile C infants had an upregulated RAGE signalling pathway (FDR <0.005) and higher risk of asthma (17.9% versus 35.6%; adjusted OR 2.49, 95% CI 1.10-5.87). CONCLUSIONS: Metatranscriptome and clustering analysis identified biologically distinct metatranscriptome profiles that have differential risks of asthma.


Asunto(s)
Asma , Bronquiolitis , Infecciones por Virus Sincitial Respiratorio , Asma/etiología , Haemophilus influenzae , Humanos , Lactante , Nasofaringe , Estudios Prospectivos , Infecciones por Virus Sincitial Respiratorio/complicaciones , Streptococcus pneumoniae
4.
Environ Res ; 207: 112183, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-34637759

RESUMEN

In urban ecosystems, microbes play a key role in maintaining major ecological functions that directly support human health and city life. However, the knowledge about the species composition and functions involved in urban environments is still limited, which is largely due to the lack of reference genomes in metagenomic studies comprises more than half of unclassified reads. Here we uncovered 732 novel bacterial species from 4728 samples collected from various common surface with the matching materials in the mass transit system across 60 cities by the MetaSUB Consortium. The number of novel species is significantly and positively correlated with the city population, and more novel species can be identified in the skin-associated samples. The in-depth analysis of the new gene catalog showed that the functional terms have a significant geographical distinguishability. Moreover, we revealed that more biosynthetic gene clusters (BGCs) can be found in novel species. The co-occurrence relationship between BGCs and genera and the geographical specificity of BGCs can also provide us more information for the synthesis pathways of natural products. Expanded the known urban microbiome diversity and suggested additional mechanisms for taxonomic and functional characterization of the urban microbiome. Considering the great impact of urban microbiomes on human life, our study can also facilitate the microbial interaction analysis between human and urban environment.


Asunto(s)
Metagenoma , Microbiota , Bacterias/genética , Humanos , Metagenómica , Interacciones Microbianas , Microbiota/genética
5.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35806287

RESUMEN

The genome of the marine alga Ulva compressa was assembled using long and short reads. The genome assembly was 80.8 Mb in size and encoded 19,207 protein-coding genes. Several genes encoding antioxidant enzymes and a few genes encoding enzymes that synthesize ascorbate and glutathione were identified, showing similarity to plant and bacterial enzymes. Additionally, several genes encoding signal transduction protein kinases, such as MAPKs, CDPKS, CBLPKs, and CaMKs, were also detected, showing similarity to plants, green microalgae, and bacterial proteins. Regulatory transcription factors, such as ethylene- and ABA-responsive factors, MYB, WRKY, and HSTF, were also present and showed similarity to plant and green microalgae transcription factors. Genes encoding enzymes that synthesize ACC and ABA-aldehyde were also identified, but oxidases that synthesize ethylene and ABA, as well as enzymes that synthesize other plant hormones, were absent. Interestingly, genes involved in plant cell wall synthesis and proteins related to animal extracellular matrix were also detected. Genes encoding cyclins and CDKs were also found, and CDKs showed similarity to animal and fungal CDKs. Few genes encoding voltage-dependent calcium channels and ionotropic glutamate receptors were identified as showing similarity to animal channels. Genes encoding Transient Receptor Potential (TRP) channels were not identified, even though TRPs have been experimentally detected, indicating that the genome is not yet complete. Thus, protein-coding genes present in the genome of U. compressa showed similarity to plant and green microalgae, but also to animal, bacterial, and fungal genes.


Asunto(s)
Chlorophyta , Microalgas , Ulva , Animales , Chlorophyta/genética , Chlorophyta/metabolismo , Cobre/metabolismo , Etilenos/metabolismo , Genes Fúngicos , Microalgas/metabolismo , Factores de Transcripción/metabolismo
6.
BMC Plant Biol ; 20(1): 25, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31941449

RESUMEN

BACKGROUND: The marine alga Ulva compressa is the dominant species in copper-polluted coastal areas in northern Chile. It has been shown that the alga tolerates micromolar concentrations of copper and accumulates copper at the intracellular level. Transcriptomic analyses were performed using total RNA of the alga cultivated with 10 µ M copper for 0, 1, 3 and 5 days using RNA-seq in order to identify processes involved in copper tolerance. RESULTS: The levels of transcripts encoding proteins belonging to Light Harvesting Complex II (LHCII), photosystem II (PSII), cytochrome b6f, PSI, LHCI, ATP synthase and proteins involved in repair of PSII and protection of PSI were increased in the alga cultivated with copper. In addition, the level of transcripts encoding proteins of mitochondrial electron transport chain, ATP synthase, and enzymes involved in C, N and S assimilation were also enhanced. The higher percentages of increase in the level of transcripts were mainly observed at days 3 and 5. In contrast, transcripts involved protein synthesis and degradation, signal transduction, and replication and DNA repair, were decreased. In addition, net photosynthesis and respiration increased in the alga cultivated with copper, mainly at days 1 to 3. Furthermore, the activities of enzymes involved in C, N and S assimilation, rubisco, glutamine synthase and cysteine synthase, respectively, were also increased, mainly at days 1 and 3. CONCLUSIONS: The marine alga U. compressa tolerates copper excess through a concomitant increase in expression of proteins involved in photosynthesis, respiration, and C, N and S assimilation, which represents an exceptional mechanism of copper tolerance.


Asunto(s)
Cobre/efectos adversos , Fotosíntesis/efectos de los fármacos , Ulva/efectos de los fármacos , Contaminantes Químicos del Agua/efectos adversos , Proteínas Algáceas/análisis , Carbono/metabolismo , Perfilación de la Expresión Génica , Nitrógeno/metabolismo , Oxígeno/metabolismo , Azufre/metabolismo , Ulva/metabolismo , Ulva/fisiología
7.
J Fish Dis ; 43(12): 1483-1496, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32955147

RESUMEN

The ISAV has a genome composed of eight segments of (-)ssRNA, segment 6 codes for the hemagglutinin-esterase protein, and has the most variable region of the genome, the highly polymorphic region (HPR), which is unique among orthomyxoviruses. The HPR has been associated with virulence, infectivity and pathogenicity. The full length of the HPR is called HPR0 and the strain with this HPR is avirulent, in contrast to strains with deleted HPR that are virulent to varying degrees. The molecular mechanism that gives rise to the different HPRs remains unclear. Here, we studied in vitro the evolution of reassortant recombinant ISAV (rISAV) in Atlantic salmon head kidney (ASK) cells. To this end, we rescued and cultivated a set of rISAV with different segment 6-HPR genotypes using a reverse genetics system and then sequencing HPR regions of the viruses. Our results show rapid multiple recombination events in ISAV, with sequence insertions and deletions in the HPR, indicating a dynamic process. Inserted sequences can be found in four segments of the ISAV genome (segments 1, 5, 6, and 8). The results suggest intra-segmental heterologous recombination, probably by class I and class II template switching, similar to the proposed segment 5 recombination mechanism.


Asunto(s)
Isavirus/genética , Isavirus/patogenicidad , Recombinación Genética , Animales , Línea Celular , Enfermedades de los Peces/virología , Genotipo , Hemaglutininas Virales/genética , Infecciones por Orthomyxoviridae/virología , Salmo salar , Análisis de Secuencia de ADN , Proteínas Virales de Fusión/genética , Virulencia/genética
8.
BMC Genomics ; 19(1): 829, 2018 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-30458726

RESUMEN

BACKGROUND: The marine alga Ulva compressa is the dominant species in coastal areas receiving effluents from copper mines. The alga can accumulate high amounts of copper and possesses a strong antioxidant system. Here, we performed short-term transcriptomic analyses using total RNA of the alga cultivated with 10 µM of copper for 0, 3, 6, 12 and 24 h by RNA-seq. RESULTS: De novo transcriptomes were assembled using the Trinity software, putative proteins were annotated and classified using Blast2GO. Differentially expressed transcripts were identified using edgeR. Transcript levels were compared by paired times 0 vs 3, 0 vs 6, 0 vs 12 and 0 vs 24 h at an FDR < 0.01 and Log2 Fold Change > 2. Up-regulated transcripts encode proteins belonging to photosystem II (PSII), Light Harvesting II Complex (LHCII), PSI and LHCI, proteins involved in assembly and repair of PSII, and assembly and protection of PSI. In addition, transcripts encoding enzymes leading to ß-carotene synthesis and enzymes belonging to the Calvin-Benson cycle were also increased. We further analyzed photosynthesis and carotenoid levels in the alga cultivated with 10 µM of copper for 0 to 24 h. Photosynthesis was increased from 3 to 24 h as well as the level of total carotenoids. The increase in transcripts encoding enzymes of the Calvin-Benson cycle suggests that C assimilation may also be increased. CONCLUSIONS: Thus, U. compressa displays a short-term response to copper stress enhancing the expression of genes encoding proteins involved in photosynthesis, enzymes involved carotenoids synthesis, as well as those belonging to the Calvin-Benson cycle, which may result in an increase in C assimilation.


Asunto(s)
Carbono/metabolismo , Carotenoides/biosíntesis , Cobre/farmacología , Fotosíntesis/genética , Transcriptoma/efectos de los fármacos , Ulva/genética , Proteínas Algáceas/genética , Proteínas Algáceas/metabolismo , Perfilación de la Expresión Génica/métodos , Ontología de Genes , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Factores de Tiempo , Ulva/metabolismo
9.
Genome Res ; 23(10): 1721-9, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23843222

RESUMEN

Emerging next-generation sequencing technologies have revolutionized the collection of genomic data for applications in bioforensics, biosurveillance, and for use in clinical settings. However, to make the most of these new data, new methodology needs to be developed that can accommodate large volumes of genetic data in a computationally efficient manner. We present a statistical framework to analyze raw next-generation sequence reads from purified or mixed environmental or targeted infected tissue samples for rapid species identification and strain attribution against a robust database of known biological agents. Our method, Pathoscope, capitalizes on a Bayesian statistical framework that accommodates information on sequence quality, mapping quality, and provides posterior probabilities of matches to a known database of target genomes. Importantly, our approach also incorporates the possibility that multiple species can be present in the sample and considers cases when the sample species/strain is not in the reference database. Furthermore, our approach can accurately discriminate between very closely related strains of the same species with very little coverage of the genome and without the need for multiple alignment steps, extensive homology searches, or genome assembly--which are time-consuming and labor-intensive steps. We demonstrate the utility of our approach on genomic data from purified and in silico "environmental" samples from known bacterial agents impacting human health for accuracy assessment and comparison with other approaches.


Asunto(s)
Bacterias/clasificación , Bacterias/genética , Biología Computacional/métodos , Bases de Datos Genéticas , Genoma Bacteriano , Análisis de Secuencia de ADN , Programas Informáticos , Algoritmos , Bacillus anthracis/genética , Teorema de Bayes , Bioterrorismo , Burkholderia mallei/genética , Burkholderia pseudomallei/genética , Clostridium botulinum/genética , Escherichia coli/genética , Infecciones por Escherichia coli/microbiología , Europa (Continente) , Francisella tularensis/genética , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Especificidad de la Especie , Yersinia pestis/genética
10.
J Urol ; 196(2): 579-87, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26807926

RESUMEN

PURPOSE: We used the PathoScope platform to perform species level analyses of publicly available, 16S rRNA pyrosequenced, asymptomatic urine data to determine relationships between microbiomes, and clinical and functional phenotypes. MATERIALS AND METHODS: We reanalyzed previously reported, cross-sectionally acquired urine samples from 47 asymptomatic subjects, including 23 controls and 24 subjects with neuropathic bladder. Urine was originally collected by the usual method of bladder drainage and analyzed by urinalysis, culture and pyrosequencing. Urinalysis and culture values were stratified as leukocyte esterase (0, or 1 or greater), nitrite (positive or negative), pyuria (fewer than 5, or 5 or greater white blood cells per high power field), cloudy urine (positive or negative) and urine culture bacterial growth (less than 50,000, or 50,000 or greater cfu/ml). PathoScope was used for next generation sequencing alignment, bacterial classification and microbial diversity characterization. RESULTS: Subjects with neuropathic bladder were significantly more likely to have positive leukocyte esterase and pyuria, cloudy urine and bacterial growth. Of 47 samples 23 showed bacterial growth on culture and in all samples bacteria were identified by pyrosequencing. Nonneuropathic bladder urine microbiomes included greater proportions of Lactobacillus crispatus in females and Staphylococcus haemolyticus in males. The Lactobacillus community differed significantly among females depending on bladder function. Irrespective of gender the subjects with neuropathic bladder had greater proportions of Enterococcus faecalis, Proteus mirabilis and Klebsiella pneumonia. In 4 subjects with neuropathic bladder Actinobaculum sp. was detected by sequencing and by PathoScope but not by cultivation and in all cases it was associated with pyuria. CONCLUSIONS: Using PathoScope plus 16S pyrosequencing we were able to identify unique, phenotype dependent, species level microbes. Novel findings included absent L. crispatus in the urine of females with neuropathic bladder and the presence of Actinobaculum only in subjects with neuropathic bladder.


Asunto(s)
Microbiota , Vejiga Urinaria Neurogénica/microbiología , Orina/microbiología , Adulto , Biomarcadores/orina , Estudios de Casos y Controles , Estudios Transversales , Femenino , Humanos , Masculino , Metagenómica , Persona de Mediana Edad , Fenotipo , Vejiga Urinaria Neurogénica/diagnóstico , Vejiga Urinaria Neurogénica/fisiopatología , Vejiga Urinaria Neurogénica/orina
12.
Genomics ; 104(1): 1-7, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24930720

RESUMEN

UNLABELLED: Next-generation sequencing data can be mapped to a reference genome to identify single-nucleotide polymorphisms/variations (SNPs/SNVs; called SNPs hereafter). In theory, SNPs can be compared across several samples and the differences can be used to create phylogenetic trees depicting relatedness among the samples. However, in practice this is difficult because currently there is no stand-alone tool that takes SNP data directly as input and produces phylogenetic trees. In response to this need, PhyloSNP application was created with two analysis methods 1) a quantitative method that creates the presence/absence matrix which can be directly used to generate phylogenetic trees or creates a tree from a shrunk genome alignment (includes additional bases surrounding the SNP position) and 2) a qualitative method that clusters samples based on the frequency of different bases found at a particular position. The algorithms were used to generate trees from Poliovirus, Burkholderia and human cancer genomics NGS datasets. AVAILABILITY: PhyloSNP is freely available for download at http://hive.biochemistry.gwu.edu/dna.cgi?cmd=phylosnp.


Asunto(s)
Burkholderia pseudomallei/genética , Genoma Humano , Genómica/métodos , Filogenia , Poliovirus/genética , Polimorfismo de Nucleótido Simple , Alineación de Secuencia/métodos , Algoritmos , Humanos , Programas Informáticos
13.
BMC Bioinformatics ; 15: 262, 2014 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-25091138

RESUMEN

BACKGROUND: The use of sequencing technologies to investigate the microbiome of a sample can positively impact patient healthcare by providing therapeutic targets for personalized disease treatment. However, these samples contain genomic sequences from various sources that complicate the identification of pathogens. RESULTS: Here we present Clinical PathoScope, a pipeline to rapidly and accurately remove host contamination, isolate microbial reads, and identify potential disease-causing pathogens. We have accomplished three essential tasks in the development of Clinical PathoScope. First, we developed an optimized framework for pathogen identification using a computational subtraction methodology in concordance with read trimming and ambiguous read reassignment. Second, we have demonstrated the ability of our approach to identify multiple pathogens in a single clinical sample, accurately identify pathogens at the subspecies level, and determine the nearest phylogenetic neighbor of novel or highly mutated pathogens using real clinical sequencing data. Finally, we have shown that Clinical PathoScope outperforms previously published pathogen identification methods with regard to computational speed, sensitivity, and specificity. CONCLUSIONS: Clinical PathoScope is the only pathogen identification method currently available that can identify multiple pathogens from mixed samples and distinguish between very closely related species and strains in samples with very few reads per pathogen. Furthermore, Clinical PathoScope does not rely on genome assembly and thus can more rapidly complete the analysis of a clinical sample when compared with current assembly-based methods. Clinical PathoScope is freely available at: http://sourceforge.net/projects/pathoscope/.


Asunto(s)
Biología Computacional/métodos , Técnicas Microbiológicas/métodos , Alineación de Secuencia/métodos , Análisis de Secuencia/métodos , Secuencia de Bases , Interacciones Huésped-Patógeno , Humanos , Filogenia , Especificidad de la Especie , Factores de Tiempo
14.
J Clin Microbiol ; 52(11): 3913-21, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25143582

RESUMEN

In critically ill patients, the development of pneumonia results in significant morbidity and mortality and additional health care costs. The accurate and rapid identification of the microbial pathogens in patients with pulmonary infections might lead to targeted antimicrobial therapy with potentially fewer adverse effects and lower costs. Major advances in next-generation sequencing (NGS) allow culture-independent identification of pathogens. The present study used NGS of essentially full-length PCR-amplified 16S ribosomal DNA from the bronchial aspirates of intubated patients with suspected pneumonia. The results from 61 patients demonstrated that sufficient DNA was obtained from 72% of samples, 44% of which (27 samples) yielded PCR amplimers suitable for NGS. Out of the 27 sequenced samples, only 20 had bacterial culture growth, while the microbiological and NGS identification of bacteria coincided in 17 (85%) of these samples. Despite the lack of bacterial growth in 7 samples that yielded amplimers and were sequenced, the NGS identified a number of bacterial species in these samples. Overall, a significant diversity of bacterial species was identified from the same genus as the predominant cultured pathogens. The numbers of NGS-identifiable bacterial genera were consistently higher than identified by standard microbiological methods. As technical advances reduce the processing and sequencing times, NGS-based methods will ultimately be able to provide clinicians with rapid, precise, culture-independent identification of bacterial, fungal, and viral pathogens and their antimicrobial sensitivity profiles.


Asunto(s)
Bacterias/clasificación , Bacterias/genética , Pulmón/microbiología , Microbiota , Neumonía Asociada al Ventilador/microbiología , Anciano , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
15.
J Virol ; 87(10): 5732-45, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23487450

RESUMEN

Human immunodeficiency virus type 1 (HIV-1) Tat is a mediator of viral transcription and is involved in the control of virus replication. However, associations between HIV-1 Tat diversity and functional effects during primary HIV-1 infection are still unclear. We estimated selection pressures in tat exon 1 using the mixed-effects model of evolution with 672 viral sequences generated from 20 patients infected with HIV-1 subtype C (HIV-1C) over 500 days postseroconversion. tat exon 1 residues 3, 4, 21, 24, 29, 39, and 68 were under positive selection, and we established that specific amino acid signature patterns were apparent in primary HIV-1C infection compared with chronic infection. We assessed the impact of these mutations on long terminal repeat (LTR) activity and found that Tat activity was negatively affected by the Ala(21) substitution identified in 13/20 (65%) of patients, which reduced LTR activity by 88% (± 1%) (P < 0.001). The greatest increase in Tat activity was seen with the Gln(35)/Lys(39) double mutant that resulted in an additional 49% (± 14%) production of LTR-driven luciferase (P = 0.012). There was a moderate positive correlation between Tat-mediated LTR activity and HIV-1 RNA in plasma (P = 0.026; r = 0.400) after 180 days postseroconversion that was reduced by 500 days postseroconversion (P = 0.043; r = 0.266). Although Tat activation of the LTR is not a strong predictor of these clinical variables, there are significant linear relationships between Tat transactivation and patients' plasma viral loads and CD4 counts, highlighting the complex interplay between Tat mutations in early HIV-1C infection.


Asunto(s)
Infecciones por VIH/virología , VIH-1/fisiología , Replicación Viral , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , Adulto , Sustitución de Aminoácidos , Recuento de Linfocito CD4 , Evolución Molecular , Femenino , Variación Genética , Duplicado del Terminal Largo de VIH/fisiología , VIH-1/genética , VIH-1/aislamiento & purificación , Humanos , Masculino , Mutación Missense , Plasma/virología , Selección Genética , Transcripción Genética , Carga Viral , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética
16.
Microorganisms ; 12(4)2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38674687

RESUMEN

Before December 2020, Antarctica had remained free of COVID-19 cases. The main concern during the pandemic was the limited health facilities available at Antarctic stations to deal with the disease as well as the potential impact of SARS-CoV-2 on Antarctic wildlife through reverse zoonosis. In December 2020, 60 cases emerged in Chilean Antarctic stations, disrupting the summer campaign with ongoing isolation needs. The SARS-CoV-2 RNA was detected in the wastewater of several scientific stations. In Antarctica, treated wastewater is discharged directly into the seawater. No studies currently address the recovery of infectious virus particles from treated wastewater, but their presence raises the risk of infecting wildlife and initiating new replication cycles. This study highlights the initial virus detection in wastewater from Antarctic stations, identifying viral RNA via RT-qPCR targeting various genomic regions. The virus's RNA was found in effluent from two wastewater plants at Maxwell Bay and O'Higgins Station on King George Island and the Antarctic Peninsula, respectively. This study explores the potential for the reverse zoonotic transmission of SARS-CoV-2 from humans to Antarctic wildlife due to the direct release of viral particles into seawater. The implications of such transmission underscore the need for continued vigilance and research.

17.
Microbiol Spectr ; 12(7): e0341523, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38864635

RESUMEN

Escherichia coli is the leading cause of urinary tract infections (UTIs) in children and adults. The gastrointestinal tract is the primary reservoir of uropathogenic E. coli, which can be acquired from a variety of environmental exposures, including retail meat. In the current study, we used a novel statistical-genomic approach to estimate the proportion of pediatric UTIs caused by foodborne zoonotic E. coli strains. E. coli urine isolates were collected from DC residents aged 2 months to 17 years from the Children's National Medical Center Laboratory, 2013-2014. During the same period, E. coli isolates were collected from retail poultry products purchased from 15 sites throughout DC. A total of 52 urine and 56 poultry isolates underwent whole-genome sequencing, core genome phylogenetic analysis, and host-origin prediction by a Bayesian latent class model that incorporated data on the presence of mobile genetic elements (MGEs) among E. coli isolates from multiple vertebrate hosts. A total of 56 multilocus sequence types were identified among the isolates. Five sequence types-ST10, ST38, ST69, ST117, and ST131-were observed among both urine and poultry isolates. Using the Bayesian latent class model, we estimated that 19% (10/52) of the clinical E. coli isolates in our population were foodborne zoonotic strains. These data suggest that a substantial portion of pediatric UTIs in the Washington DC region may be caused by E. coli strains originating in food animals and likely transmitted via contaminated poultry meat.IMPORTANCEEscherichia coli UTIs are a heavy public health burden and can have long-term negative health consequences for pediatric patients. E. coli has an extremely broad host range, including humans, chickens, turkeys, pigs, and cattle. E. coli derived from food animals is a frequent contaminant of retail meat products, but little is known about the risk these strains pose to pediatric populations. Quantifying the proportion of pediatric UTIs caused by food-animal-derived E. coli, characterizing the highest-risk strains, and identifying their primary reservoir species could inform novel intervention strategies to reduce UTI burden in this vulnerable population. Our results suggest that retail poultry meat may be an important vehicle for pediatric exposure to zoonotic E. coli strains capable of causing UTIs. Vaccinating poultry against the highest-risk strains could potentially reduce poultry colonization, poultry meat contamination, and downstream pediatric infections.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Filogenia , Aves de Corral , Infecciones Urinarias , Secuenciación Completa del Genoma , Animales , Infecciones Urinarias/microbiología , Infecciones Urinarias/epidemiología , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/veterinaria , Infecciones por Escherichia coli/epidemiología , Humanos , Niño , Aves de Corral/microbiología , Adolescente , Preescolar , Lactante , Masculino , Femenino , Escherichia coli/genética , Escherichia coli/aislamiento & purificación , Escherichia coli/clasificación , Escherichia coli/patogenicidad , Tipificación de Secuencias Multilocus , Genoma Bacteriano
18.
BMC Genomics ; 14: 410, 2013 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-23777341

RESUMEN

BACKGROUND: Phylogenetic comparison of bacteriophages requires whole genome approaches such as dotplot analysis, genome pairwise maps, and gene content analysis. Currently mycobacteriophages, a highly studied phage group, are categorized into related clusters based on the comparative analysis of whole genome sequences. With the recent explosion of phage isolation, a simple method for phage cluster prediction would facilitate analysis of crude or complex samples without whole genome isolation and sequencing. The hypothesis of this study was that mycobacteriophage-cluster prediction is possible using comparison of a single, ubiquitous, semi-conserved gene. Tape Measure Protein (TMP) was selected to test the hypothesis because it is typically the longest gene in mycobacteriophage genomes and because regions within the TMP gene are conserved. RESULTS: A single gene, TMP, identified the known Mycobacteriophage clusters and subclusters using a Gepard dotplot comparison or a phylogenetic tree constructed from global alignment and maximum likelihood comparisons. Gepard analysis of 247 mycobacteriophage TMP sequences appropriately recovered 98.8% of the subcluster assignments that were made by whole-genome comparison. Subcluster-specific primers within TMP allow for PCR determination of the mycobacteriophage subcluster from DNA samples. Using the single-gene comparison approach for siphovirus coliphages, phage groupings by TMP comparison reflected relationships observed in a whole genome dotplot comparison and confirm the potential utility of this approach to another widely studied group of phages. CONCLUSIONS: TMP sequence comparison and PCR results support the hypothesis that a single gene can be used for distinguishing phage cluster and subcluster assignments. TMP single-gene analysis can quickly and accurately aid in mycobacteriophage classification.


Asunto(s)
Bacteriófagos/genética , Genes Virales/genética , Genómica , Secuencia de Bases , Análisis por Conglomerados , Secuencia Conservada/genética , Funciones de Verosimilitud , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Proteínas Virales/genética
19.
Microbiol Resour Announc ; 12(6): e0005923, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37184380

RESUMEN

Microbes play an important role in coastal and estuarine waters. We present 93 metagenomes and 677 metagenome-assembled genomes (MAGs) from Comau Fjord, Patagonia (42°S), to further understand the microbial dynamics and their response to anthropogenic disturbances. These data represent a spatially (35-km transect) and temporally (2016 to 2019) explicit data set.

20.
Microbiol Resour Announc ; 12(4): e0008223, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-36946737

RESUMEN

Viruses are key players in marine environments, affecting food webs and biogeochemical cycles. We present 48 viral metagenomes and 5,656 viral operational taxonomic units (vOTUs) from Comau Fjord, Patagonia (42°S), to understand viral-mediated processes in coastal and estuarine waters. These data represent a spatial (35-km transect, two depths) and seasonal (winter and fall) data set.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda