Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Open Res Eur ; 4: 78, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39100074

RESUMEN

The study of planets and small bodies within our Solar System is fundamental for understanding the formation and evolution of the Earth and other planets. Compositional and meteorological studies of the giant planets provide a foundation for understanding the nature of the most commonly observed exoplanets, while spectroscopic observations of the atmospheres of terrestrial planets, moons, and comets provide insights into the past and present-day habitability of planetary environments, and the availability of the chemical ingredients for life. While prior and existing (sub)millimeter observations have led to major advances in these areas, progress is hindered by limitations in the dynamic range, spatial and temporal coverage, as well as sensitivity of existing telescopes and interferometers. Here, we summarize some of the key planetary science use cases that factor into the design of the Atacama Large Aperture Submillimeter Telescope (AtLAST), a proposed 50-m class single dish facility: (1) to more fully characterize planetary wind fields and atmospheric thermal structures, (2) to measure the compositions of icy moon atmospheres and plumes, (3) to obtain detections of new, astrobiologically relevant gases and perform isotopic surveys of comets, and (4) to perform synergistic, temporally-resolved measurements in support of dedicated interplanetary space missions. The improved spatial coverage (several arcminutes), resolution (~ 1.2'' - 12''), bandwidth (several tens of GHz), dynamic range (~ 10 5) and sensitivity (~ 1 mK km s -1) required by these science cases would enable new insights into the chemistry and physics of planetary environments, the origins of prebiotic molecules and the habitability of planetary systems in general.


Our present understanding of what planets and comets are made of, and how their atmospheres move and change, has been greatly influenced by observations using existing and prior telescopes operating at wavelengths in the millimeter/submillimeter range (between the radio and infrared parts of the electromagnetic spectrum), yet major gaps exist in our knowledge of these diverse phenomena. Here, we describe the need for a new telescope capable of simultaneously observing features on very large and very small scales, and covering a very large spread of intrinsic brightness, in planets and comets. Such a telescope is required for mapping storms on giant planets, measuring the compositions of the atmospheres and plumes of icy moons, detecting new molecules in comets and planetary atmospheres, and to act as a complement for measurements by current and future interplanetary spacecraft missions. We discuss the limitations of currently-available millimeter/submillimeter telescopes, and summarize the requirements and applications of a new and larger, more sensitive facility operating at these wavelengths: the Atacama Large Aperture Submillimeter Telescope (AtLAST).

2.
Space Sci Rev ; 220(5): 59, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39132056

RESUMEN

We present the state of the art on the study of surfaces and tenuous atmospheres of the icy Galilean satellites Ganymede, Europa and Callisto, from past and ongoing space exploration conducted with several spacecraft to recent telescopic observations, and we show how the ESA JUICE mission plans to explore these surfaces and atmospheres in detail with its scientific payload. The surface geology of the moons is the main evidence of their evolution and reflects the internal heating provided by tidal interactions. Surface composition is the result of endogenous and exogenous processes, with the former providing valuable information about the potential composition of shallow subsurface liquid pockets, possibly connected to deeper oceans. Finally, the icy Galilean moons have tenuous atmospheres that arise from charged particle sputtering affecting their surfaces. In the case of Europa, plumes of water vapour have also been reported, whose phenomenology at present is poorly understood and requires future close exploration. In the three main sections of the article, we discuss these topics, highlighting the key scientific objectives and investigations to be achieved by JUICE. Based on a recent predicted trajectory, we also show potential coverage maps and other examples of reference measurements. The scientific discussion and observation planning presented here are the outcome of the JUICE Working Group 2 (WG2): "Surfaces and Near-surface Exospheres of the Satellites, dust and rings".

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda