Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Opt Express ; 30(8): 12788-12796, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35472908

RESUMEN

We propose an effective medium approach to tune and control surface phonon polariton dispersion relations along the three main crystallographic directions of α-phase molybdenum trioxide. We show that a metamaterial consisting of subwavelength air inclusions into the α-MoO3 matrix displays new absorption modes producing a split of the Reststrahlen bands of the crystal and creating new branches of phonon polaritons. In particular, we report hybridization of bulk and surface polariton modes by tailoring metamaterials' structural parameters. Theoretical predictions obtained with the effective medium approach are validated by full-field electromagnetic simulations using finite difference time domain method. Our study sheds light on the use of effective medium theory for modeling and predicting wavefront polaritons. Our simple yet effective approach could potentially enable different functionalities for hyperbolic infrared metasurface devices and circuits on a single compact platform for on-chip infrared photonics.

2.
Opt Express ; 30(10): 17371-17382, 2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-36221562

RESUMEN

Flat optics nanogratings supported on thin free-standing membranes offer the opportunity to combine narrowband waveguided modes and Rayleigh anomalies for sensitive and tunable biosensing. At the surface of high-refractive index Si3N4 membranes we engineered lithographic nanogratings based on plasmonic nanostripes, demonstrating the excitation of sharp waveguided modes and lattice resonances. We achieved fine tuning of these optical modes over a broadband Visible and Near-Infrared spectrum, in full agreement with numerical calculations. This possibility allowed us to select sharp waveguided modes supporting strong near-field amplification, extending for hundreds of nanometres out of the grating and enabling versatile biosensing applications. We demonstrate the potential of this flat-optics platform by devising a proof-of-concept nanofluidic refractive index sensor exploiting the long-range waveguided mode operating at the sub-picoliter scale. This free-standing device configuration, that could be further engineered at the nanoscale, highlights the strong potential of flat-optics nanoarrays in optofluidics and nanofluidic biosensing.


Asunto(s)
Técnicas Biosensibles , Luz , Óptica y Fotónica , Refractometría
3.
Opt Express ; 28(26): 39203-39215, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33379475

RESUMEN

We experimentally investigate the semiconductor-to-metal transition (SMT) in vanadium dioxide thin films using an infrared thermographic technique. During the semiconductor to metal phase change process, VO2 optical properties dynamically change and infrared emission undergoes a hysteresis loop due to differences between heating and cooling stages. The shape of the hysteresis loop was accurately monitored under different dynamic heating/cooling rates. In order to quantify and understand the effects of different rates, we used a numerical modelling approach in which a VO2 thin layer was modeled as metamaterial. The main experimental findings are interpreted assuming that both the rate of formation and shape of metallic inclusions are tuned with the heating/cooling rate. The structural transition from monoclinic to tetragonal phases is the main mechanism for controlling the global properties of the phase transition. However, our experimental results reveal that the dynamics of the heating/cooling process can become a useful parameter for further tuning options and lays out a macroscopic optical sensing scheme for the microscopic phase change dynamics of VO2. Our study sheds light on phase-transition dynamics and their effect on the infrared emission spectra of VO2 thin films, therefore enabling the heating/cooling rate to be an additional parameter to control infrared emission characteristics of thermal emitters. The hysteresis loop represents the phase coexistence region, thus being of fundamental importance for several applications, such as the operation of radiative thermal logic elements based on phase transition materials. For such applications, the phase transition region is shifted for heating and cooling processes. We also show that, depending on the way the phase change elements are heated, the temperature operation range will be slightly modified.

4.
Opt Express ; 28(13): 19334-19348, 2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32672213

RESUMEN

We investigate the possibility of spatially and spectrally controlling the thermal infrared emission by exploitation of the Yagi-Uda antenna design. Hybrid antennas composed of both SiC and Au rods are considered and the contributions of emission from all the elements, at a given equilibrium temperature, are taken into account. We show that the detrimental effect due to thermal emission from the not ideal parasitic elements drastically affect the performances of conventional thermal Au antennas in the 12 µm wavelength range. Nevertheless, our results show that the hybrid approach allows the development of efficient narrow-band and high directivity sources. The possibility of exploiting the Yagi-Uda design both in transmission and in reception modes, may open the way to the realization of miniaturized, efficient, robust and cheap sensor devices for mass-market applications.

5.
Opt Express ; 27(17): 24260-24273, 2019 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-31510318

RESUMEN

Active, ultra-fast external control of the emission properties at the nanoscale is of great interest for chip-scale, tunable and efficient nanophotonics. Here we investigated the emission control of dipolar emitters coupled to a nanostructure made of an Au nanoantenna, and a thin vanadium dioxide (VO2) layer that changes from semiconductor to metallic state. If the emitters are sandwiched between the nanoantenna and the VO2 layer, the enhancement and/or suppression of the nanostructure's magnetic dipole resonance enabled by the phase change behavior of the VO2 layer can provide a high contrast ratio of the emission efficiency. We show that a single nanoantenna can provide high magnetic field in the emission layer when VO2 is metallic, leading to high emission of the magnetic dipoles; this emission is then lowered when VO2 switches back to semiconductor. We finally optimized the contrast ratio by considering different orientation, distribution and nature of the dipoles, as well as the influence of a periodic Au nanoantenna pattern. As an example of a possible application, the design is optimized for the active control of an Er3+ doped SiO2 emission layer. The combination of the emission efficiency increase due to the plasmonic nanoantenna resonances and the ultra-fast contrast control due to the phase-changing medium can have important applications in tunable efficient light sources and their nanoscale integration.

6.
Opt Express ; 25(13): 14148-14157, 2017 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-28789000

RESUMEN

We demonstrate the control of enhanced chiral field distribution at the surface of hybrid metallo-dielectric nanostructures composed of self-assembled vertical hexagonal GaAs-based nanowires having three of the six sidewalls covered with Au. We show that weakly-guided modes of vertical GaAs nanowires can generate regions of high optical chirality that are further enhanced by the break of the symmetry introduced by the gold layer. Changing the angle of incidence of a linearly polarized plane wave it is possible to tailor and optimize the maps of the optical chirality in proximity of the gold plated walls. The low cost feasibility of the sample combined to the simple control by using linearly polarized light and the easy positioning of chiral molecules by functionalization of the gold plates make our proposed scheme very promising for enhanced enantioselective spectroscopy applications.

7.
Opt Lett ; 38(13): 2256-8, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23811894

RESUMEN

Following the impact of a single femtosecond light pulse on nickel nanostripes, material deformations-or "nanobumps"-are created. We have studied the dependence of these nanobumps on the length of nanostripes and verified the link with plasmons. More specifically, local electric currents can melt the nanostructures in the hotspots, where hydrodynamic processes give rise to nanobumps. This process is further confirmed by independently simulating local magnetic fields, since these are produced by the same local electric currents.


Asunto(s)
Electrones , Nanoestructuras , Níquel/química , Conductividad Eléctrica
8.
Adv Mater ; 35(34): e2206005, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36529691

RESUMEN

Zinc oxide-zinc tungstate (ZnO-ZnWO4 ) is a self-organized eutectic composite consisting of parallel ZnO thin layers (lamellae) embedded in a dielectric ZnWO4 matrix. The electromagnetic behavior of composite materials is affected not only by the properties of single constituent materials but also by their reciprocal geometrical micro-/nano-structurization, as in the case of ZnO-ZnWO4 . The light interacting with microscopic structural features in the composite material provides new optical properties, which overcome the possibilities offered by the constituent materials. Here remarkable active and passive polarization control of this composite over various wavelength ranges are shown; these properties are based on the crystal orientation of ZnO with respect to the biaxiality of the ZnWO4 matrix. In the visible range, polarization-dependent polarized luminescence occurs for blue light emitted by ZnO. Moreover, it is reported on the enhancement of the second harmonic generation of the composite with respect to its constituents, due to the phase matching condition. Finally, in the medium infrared spectral region, the composite behaves as a metamaterial with strong polarization dependence.

9.
Opt Express ; 19(9): 8218-32, 2011 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-21643072

RESUMEN

We report results of second harmonic generation calculations performed on Silver coupled 2D-nanoresonators. Coupling is responsible for the creation of resonant modes that can be localized on small portions of the structure or distributed over the whole structure. Different field profiles can be obtained by varying the parameters of the input field (i.e. the wavelength). The second harmonic generation nonlinear process is enhanced by the excitation of coupled surface plasmon polaritons. The emitted field is strongly affected by the linear properties of the structure behaving as a nano antenna. We note that different configurations of the pump field lead to different second harmonic far-field emission patterns. Also, we show that the angular emission of the second harmonic field contains information about the spatial location of the pump field hot spots at different frequencies. Applications to a new class of nano sources for single molecule fluorescence and sensors are proposed.


Asunto(s)
Nanoestructuras/química , Nanotecnología/instrumentación , Dispositivos Ópticos , Plata/química , Transductores , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo
10.
Opt Express ; 19(27): 26752-67, 2011 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-22274259

RESUMEN

We numerically study second harmonic generation from dipole gold nanoantennas by analyzing the different contributions of bulk and surface nonlinear terms. We focus our attention to the properties of the emitted field related to the different functional expressions of the two terms. The second harmonic field exhibits different far and near field patterns if both nonlinear contributions are taken into account or if only one of them is considered. This effect persists despite of the model used to estimate the parameters of the nonlinear sources and it is strictly related to the resonant behavior of the plasmonic nanostructure at the fundamental frequency field and to its linear properties at the second harmonic frequency. We show that the excitation of localized surface plasmon polaritons in these structures can remarkably modify the nonlinear response of the system by enhancing surface and/or bulk contributions, creating regimes where bulk nonlinear terms dominate over surface linear terms and vice versa. Finally, the results of our calculations suggest a method that could be implemented to experimentally extract information on the relevance of bulk and surface contributions by measuring and analyzing the generated far field second harmonic patterns in metal nanoantennas and, more in general, in plasmonic nanostructures.


Asunto(s)
Nanoestructuras/química , Radiometría/métodos , Resonancia por Plasmón de Superficie/métodos , Simulación por Computador , Luz , Modelos Teóricos , Dosis de Radiación , Dispersión de Radiación
11.
ACS Appl Mater Interfaces ; 13(41): 48981-48987, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34612637

RESUMEN

Merging the properties of VO2 and van der Waals (vdW) materials has given rise to novel tunable photonic devices. Despite recent studies on the effect of the phase change of VO2 on tuning near-field optical response of phonon polaritons in the infrared range, active tuning of optical phonons (OPhs) using far-field techniques has been scarce. Here, we investigate the tunability of OPhs of α-MoO3 in a multilayer structure with VO2. Our experiments show the frequency and intensity tuning of 2 cm-1 and 11% for OPhs in the [100] direction and 2 cm-1 and 28% for OPhs in the [010] crystal direction of α-MoO3. Using the effective medium theory and dielectric models of each layer, we verify these findings with simulations. We then use loss tangent analysis and remove the effect of the substrate to understand the origin of these spectral characteristics. We expect that these findings will assist in intelligently designing tunable photonic devices for infrared applications, such as tunable camouflage and radiative cooling devices.

12.
Opt Express ; 18(8): 7972-81, 2010 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-20588640

RESUMEN

Spatial and temporal locking of fundamental and second harmonic pulses was realized by means of photorefractive nonlinearity and highly mismatched harmonic generation. Due to the presence of both phase-locked and unlocked second harmonic pulses, a twin simultonic state was observed. Simultonic filamentation occurring at high pumping rates allowed us to determine a relation between the simulton's waist and its intensity.

13.
Opt Express ; 17(5): 3141-7, 2009 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-19259150

RESUMEN

We experimentally demonstrate simultaneous phase and group velocity locking of fundamental and generated second harmonic pulses in Lithium Niobate, under conditions of material phase mismatch. In phase-mismatched, pulsed second harmonic generation in addition to a reflected signal two forward-propagating pulses are also generated at the interface between a linear and a second order nonlinear material: the first pulse results from the solution of the homogeneous wave equation, and propagates at the group velocity expected from material dispersion; the second pulse is the solution of the inhomogeneous wave equation, is phase-locked and trapped by the pump pulse, and follows the pump trajectory. At normal incidence, the normal and phase locked pulses simply trail each other. At oblique incidence, the consequences can be quite dramatic. The homogeneous pulse refracts as predicted by material dispersion and Snell's law, yielding at least two spatially separate second harmonic spots at the medium's exit. We thus report the first experimental results showing that, at oblique incidence, fundamental and phase-locked second harmonic pulses travel with the same group velocity and follow the same trajectory. This is direct evidence that, at least up to first order, the effective dispersion of the phase-locked pulse is similar to the dispersion of the pump pulse.

14.
Opt Express ; 17(5): 3603-9, 2009 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-19259200

RESUMEN

Here we report the second harmonic emission properties of self-organized gold nanowires arrays supported on dielectric substrates with a sub-wavelength periodic pattern. The peculiar morphology of the nanowires, which are locally tilted with respect to the average plane of the substrate, allows to generate maximum second harmonic signal at normal incidence with a polarization direction driven by the orientation of the wires (perpendicular to the wires). The generation efficiency was increased by tailoring the growth process in order to tune the metal plasmon resonance close to the pump field frequency and also by increasing the local tilt of the nanowires.

15.
Opt Express ; 15(2): 508-23, 2007 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-19532269

RESUMEN

We numerically demonstrate negative refraction of the Poynting vector and sub-wavelength focusing in the visible part of the spectrum using a transparent multilayer, metallo-dielectric photonic band gap structure. Our results reveal that in the wavelength regime of interest evanescent waves are not transmitted by the structure, and that the main underlying physical mechanisms for sub-wavelength focusing are resonance tunneling, field localization, and propagation effects. These structures offer several advantages: tunability and high transmittance (50% or better) across the visible and near IR ranges; large object-image distances, with image planes located beyond the range where the evanescent waves have decayed. From a practical point of view, our findings point to a simpler way to fabricate a material that exhibits negative refraction and maintains high transparency across a broad wavelength range. Transparent metallo-dielectric stacks also provide an opportunity to expand the exploration of wave propagation phenomena in metals, both in the linear and nonlinear regimes.

16.
Phys Rev E Stat Nonlin Soft Matter Phys ; 75(6 Pt 2): 066606, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17677375

RESUMEN

We predict the existence of gap solitons in a nonlinear, quadratic Fabry-Pérot negative index cavity. A peculiarity of a single negative index layer is that if magnetic and electric plasma frequencies are different it forms a photonic band structure similar to that of a multilayer stack composed of ordinary, positive index materials. This similarity also results in comparable field localization and enhancement properties that under appropriate conditions may be used to either dynamically shift the band edge, or for efficient energy conversion. We thus report that an intense, fundamental pump pulse is able to shift the band edge of a negative index cavity, and make it possible for a weak second harmonic pulse initially tuned inside the gap to be transmitted, giving rise to a gap soliton. The process is due to cascading, a well-known phenomenon that occurs far from phase matching conditions that limits energy conversion rates, it resembles a nonlinear third-order process, and causes pulse compression due to self-phase modulation. The symmetry of the equations of motion under the action of either an electric or a magnetic nonlinearity suggests that both nonlinear polarization and magnetization, or a combination of both, can lead to solitonlike pulses. More specifically, the antisymmetric localization properties of the electric and magnetic fields cause a nonlinear polarization to generate a dark soliton, while a nonlinear magnetization spawns a bright soliton.

17.
Sci Rep ; 7: 45247, 2017 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-28338074

RESUMEN

Second-order nonlinear optical materials are used to generate new frequencies by exploiting second-harmonic generation (SHG), a phenomenon where a nonlinear material generates light at double the optical frequency of the input beam. Maximum SHG is achieved when the pump and the generated waves are in phase, for example through birefringence in uniaxial crystals. However, applying these materials usually requires a complicated cutting procedure to yield a crystal with a particular orientation. Here we demonstrate the first example of phase matching under the normal incidence of SHG in a biaxial monoclinic single crystal of zinc tungstate. The crystal was grown by the micro-pulling-down method with the (102) plane perpendicular to the growth direction. Additionally, at the same time white light was generated as a result of stimulated Raman scattering and multiphoton luminescence induced by higher-order effects such as three-photon luminescence enhanced by cascaded third-harmonic generation. The annealed crystal offers SHG intensities approximately four times larger than the as grown one; optimized growth and annealing conditions may lead to much higher SHG intensities.

18.
Sci Rep ; 7(1): 2833, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28588228

RESUMEN

III-V semiconductors nanowires (NW) have recently attracted a significant interest for their potential application in the development of high efficiency, highly-integrated photonic devices and in particular for the possibility to integrate direct bandgap materials with silicon-based devices. Here we report the absorbance properties of GaAs-AlGaAs-GaAs core-shell-supershell NWs using photo-acoustic spectroscopy (PAS) measurements in the spectral range from 300 nm to 1100 nm wavelengths. The NWs were fabricated by self-catalyzed growth on Si substrates and their dimensions (length ~5 µm, diameter ~140-150 nm) allow for the coupling of the incident light to the guided modes in near-infrared (IR) part of the spectrum. This coupling results in resonant absorption peaks in the visible and near IR clearly evidenced by PAS. The analysis reveal broadening of the resonant absorption peaks arising from the NW size distribution and the interaction with other NWs. The results show that the PAS technique, directly providing scattering independent absorption spectra, is a very useful tool for the characterization and investigation of vertical NWs as well as for the design of NW ensembles for photonic applications, such as Si-integrated light sources, solar cells, and wavelength dependent photodetectors.

19.
Opt Express ; 14(11): 4746-56, 2006 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-19516631

RESUMEN

We study pulsed second harmonic generation in metamaterials under conditions of significant absorption. Tuning the pump in the negative index range, a second harmonic signal is generated in the positive index region, such that the respective indices of refraction have the same magnitudes but opposite signs. This insures that a forward-propagating pump is exactly phase matched to the backward-propagating second harmonic signal. Using peak intensities of ~500 MW/cm(2), assuming chi((2))~80pm/V, we predict conversion efficiencies of 12% and 0.2% for attenuation lengths of 50 and 5microm, respectively.

20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(5 Pt 2): 056604, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16803054

RESUMEN

We derive an expression for the Minkowski momentum under conditions of dispersive susceptibility and permeability, and compare it to the Abraham momentum in order to test the principle of conservation of linear momentum when matter is present. We investigate cases when an incident pulse interacts with a variety of structures, including thick substrates, resonant, free-standing, micron-sized multilayer stacks, and negative index materials. In general, we find that for media only a few wavelengths thick the Minkowski and Abraham momentum densities yield similar results. For more extended media, including substrates and Bragg mirrors embedded inside thick dielectric substrates, our calculations show dramatic differences between the Minkowski and Abraham momenta. Without exception, in all cases investigated the instantaneous Lorentz force exerted on the medium is consistent only with the rate of change of the Abraham momentum. As a practical example, we use our model to predict that electromagnetic momentum and energy buildup inside a multilayer stack can lead to widely tunable accelerations that may easily reach and exceed 10(10) m/s(2) for a mass of 10(-5) g. Our results suggest that the physics of the photonic band edge and other similar finite structures may be used as a testing ground for basic electromagnetic phenomena such as momentum transfer to macroscopic media.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda