Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Biochem Cell Biol ; 97(2): 187-192, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30332552

RESUMEN

In the kidney, the accumulation of heavy metals such as Cd2+ produces mitochondrial dysfunctions, i.e., uncoupling of the oxidative phosphorylation, inhibition of the electron transport through the respiratory chain, and collapse of the transmembrane electrical gradient. This derangement may be due to the fact that Cd2+ induces the transition of membrane permeability from selective to nonselective via the opening of a transmembrane pore. In fact, Cd2+ produces this injury through the stimulation of oxygen-derived radical generation, inducing oxidative stress. Several molecules have been used to avoid or even reverse Cd2+-induced mitochondrial injury, for instance, cyclosporin A, resveratrol, dithiocarbamates, and even EDTA. The aim of this study was to explore the possibility that the antioxidant tamoxifen could protect mitochondria from the deleterious effects of Cd2+. Our results indicate that the addition of 1 µmol/L Cd2+ to mitochondria collapsed the transmembrane electrical gradient, induced the release of cytochrome c, and increased both the generation of H2O2 and the oxidative damage to mitochondrial DNA (among other measured parameters). Of interest, these mitochondrial dysfunctions were ameliorated after the addition of tamoxifen.


Asunto(s)
Cadmio/toxicidad , Peróxido de Hidrógeno/metabolismo , Riñón/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Animales , Riñón/patología , Mitocondrias/patología , Oxidación-Reducción/efectos de los fármacos
2.
Biochem Cell Biol ; 95(5): 556-562, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28595020

RESUMEN

In this work, we studied the protective effects of tamoxifen (TAM) on disulfiram (Dis)-induced mitochondrial membrane insult. The results indicate that TAM circumvents the inner membrane leakiness manifested as Ca2+ release, mitochondrial swelling, and collapse of the transmembrane electric gradient. Furthermore, it was found that TAM prevents inactivation of the mitochondrial enzyme aconitase and detachment of cytochrome c from the inner membrane. Interestingly, TAM also inhibited Dis-promoted generation of hydrogen peroxide. Given that TAM is an antioxidant molecule, it is plausible that its protection may be due to the inhibition of Dis-induced oxidative stress.


Asunto(s)
Disulfiram/efectos adversos , Membranas Mitocondriales/efectos de los fármacos , Tamoxifeno/farmacología , Animales , Calcio/metabolismo , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/patología , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar
3.
Cell Biol Int ; 41(12): 1356-1366, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28884894

RESUMEN

Heavy metal ions are known to produce harmful alterations on kidney function. Specifically, the accumulation of Hg2+ in kidney tissue may induce renal failure. In this work, the protective effect of CDP-choline against the deleterious effects induced by Hg2+ on renal function was studied. CDP-choline administered ip at a dose of 125 mg/kg body weight prevented the damage induced by Hg2+ administration at a dose of 3 mg/kg body weight. The findings indicate that CDP-choline guards mitochondria against Hg2+ -toxicity by preserving their ability to retain matrix content, such as accumulated Ca2+ . This nucleotide also protected mitochondria from Hg2+ -induced loss of the transmembrane electric gradient and from the generation of hydrogen peroxide and membrane TBARS. In addition, CDP-choline avoided the oxidative damage of mtDNA and inhibited the release of the interleukins IL-1 and IL6, recognized as markers of acute inflammatory reaction. After the administration of Hg2+ and CDP, CDP-choline maintained nearly normal levels of renal function and creatinine clearance, as well as blood urea nitrogen (BUN) and serum creatinine.


Asunto(s)
Citidina Difosfato Colina/farmacología , Riñón/efectos de los fármacos , Mercurio/toxicidad , Mitocondrias/efectos de los fármacos , Animales , Creatina/metabolismo , Interleucina-1/metabolismo , Interleucina-6/metabolismo , Riñón/metabolismo , Riñón/patología , Pruebas de Función Renal , Masculino , Potenciales de la Membrana/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Oxidación-Reducción , Ratas , Ratas Wistar , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
4.
Cell Biol Int ; 40(12): 1349-1356, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27730705

RESUMEN

In this work, we studied the effect of tamoxifen and cyclosporin A on mitochondrial permeability transition caused by addition of the thiol-oxidizing pair Cu2+ -orthophenanthroline. The findings indicate that tamoxifen and cyclosporin A circumvent the oxidative membrane damage manifested by matrix Ca2+ release, mitochondrial swelling, and transmembrane electrical gradient collapse. Furthermore, it was found that tamoxifen and cyclosporin A prevent the generation of TBARs promoted by Cu2+ -orthophenanthroline, as well as the inactivation of the mitochondrial enzyme aconitase and disruption of mDNA. Electrophoretic analysis was unable to demonstrate a cross-linking reaction between membrane proteins. Yet, it was found that Cu2+ -orthophenanthroline induced the generation of reactive oxygen species. It is thus plausible that membrane leakiness is due to an oxidative stress injury.


Asunto(s)
Cobre/toxicidad , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Compuestos Organometálicos/toxicidad , Estrés Oxidativo/efectos de los fármacos , Fenantrolinas/toxicidad , Tamoxifeno/farmacología , Western Blotting , Calcio/metabolismo , Ciclosporina/farmacología , ADN Mitocondrial/metabolismo , Electroforesis en Gel de Poliacrilamida , Glutatión/metabolismo , Peróxido de Hidrógeno/metabolismo , Mitocondrias/patología , Sustancias Protectoras/farmacología , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
5.
Biochem Cell Biol ; 93(3): 185-91, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25589288

RESUMEN

Hyperthyroidism represents an increased risk factor for cardiovascular morbidity, especially when the heart is subjected to an ischemia/reperfusion process. The aim of this study was to explore the possible protective effect of the nucleotide citicoline on the susceptibility of hyperthyroid rat hearts to undergo reperfusion-induced damage, which is associated with mitochondrial dysfunction. Hence, we analyzed the protective effect of citicoline on the electrical behavior and on the mitochondrial function in rat hearts. Hyperthyroidism was established after a daily i.p. injection of triiodothyronine (at 2 mg/kg of body weight) during 5 days. Thereafter, citicoline was administered i.p. (at 125 mg/kg of body weight) for 5 days. In hyperthyroid rat hearts, citicoline protected against reperfusion-induced ventricular arrhythmias. Moreover, citicoline maintained the accumulation of mitochondrial Ca(2+), allowing mitochondria to reach a high transmembrane electric gradient that protected against the release of cytochrome c. It also preserved the activity of the enzyme aconitase that inhibited the release of cytokines. The protection also included the inhibition of oxidative stress-induced mDNA disruption. We conclude that citicoline protects against the reperfusion damage that is found in the hyperthyroid myocardium. This effect might be due to its inhibitory action on the permeability transition in mitochondria.


Asunto(s)
Cardiotónicos/farmacología , Citidina Difosfato Colina/farmacología , Corazón/efectos de los fármacos , Hipertiroidismo/fisiopatología , Mitocondrias Cardíacas/efectos de los fármacos , Aconitato Hidratasa/metabolismo , Animales , Calcio/metabolismo , ADN Mitocondrial/metabolismo , Hipertiroidismo/inducido químicamente , Hipertiroidismo/complicaciones , Mitocondrias Cardíacas/metabolismo , Reperfusión Miocárdica , Daño por Reperfusión Miocárdica/prevención & control , Ratas , Superóxido Dismutasa/metabolismo , Triyodotironina/efectos adversos
6.
Cell Biol Int ; 38(3): 287-95, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23765583

RESUMEN

Chemical modification of primary amino groups of mitochondrial membrane proteins by the fluorescent probe fluorescamine induces non-specific membrane permeabilisation. Titration of the lysine ϵ-amino group promoted efflux of accumulated Ca(2+), collapse of transmembrane potential and mitochondrial swelling. Ca(2+) release was inhibited by cyclosporin A. Considering the latter, we assumed that fluorescamine induces permeability transition. Carboxyatractyloside also inhibited the reaction. Using a polyclonal antibody for adenine nucleotide translocase, Western blot analysis showed that the carrier appeared labelled with the fluorescent probe. The results point out the importance of the ϵ-amino group of lysine residues, located in the adenine nucleotide carrier, on the modulation of membrane permeability, since its blockage suffices to promote opening of the non-specific nanopore.


Asunto(s)
Permeabilidad de la Membrana Celular/efectos de los fármacos , Fluorescamina/farmacología , Lisina/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Translocasas Mitocondriales de ADP y ATP/metabolismo , Animales , Atractilósido/análogos & derivados , Atractilósido/metabolismo , Calcio/metabolismo , Permeabilidad de la Membrana Celular/fisiología , Transporte Iónico/efectos de los fármacos , Transporte Iónico/fisiología , Masculino , Potenciales de la Membrana/fisiología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Translocasas Mitocondriales de ADP y ATP/efectos de los fármacos , Dilatación Mitocondrial/efectos de los fármacos , Dilatación Mitocondrial/fisiología , Ratas , Ratas Wistar
7.
J Bioenerg Biomembr ; 43(6): 757-64, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22108703

RESUMEN

Permeability transition was examined in heart mitochondria isolated from neonate rats. We found that these mitochondria were more susceptible to Ca(2+)-induced membrane leakiness than mitochondria from adult rats. In K(+) containing medium, at 25 °C, mitochondria were unable to accumulate Ca(2+). Conversely, in Na(+) containing medium, mitochondria accumulated effectively Ca(2+). At 15 °C mitochondria accumulated Ca(2+) regardless of the presence of K(+). Kinetics of Ca(2+) accumulation showed a similar Vmax as that of adult mitochondria. Lipid milieu of inner membrane contained more unsaturated fatty acids than adult mitochondria. Aconitase inhibition and high thiobarbituric acid-reactive substances (TBARS) indicate that oxidative stress caused mitochondrial damage. In addition, proteomics analysis showed that there is a considerable diminution of succinate dehydrogenase C and subunit 4 of cytochrome oxidase in neonate mitochondria. Our proposal is that dysfunction of the respiratory chain makes neonate mitochondria more susceptible to damage by oxidative stress.


Asunto(s)
Calcio/farmacología , Mitocondrias Cardíacas/metabolismo , Membranas Mitocondriales/metabolismo , Estrés Oxidativo/efectos de los fármacos , Animales , Transporte de Electrón/efectos de los fármacos , Permeabilidad/efectos de los fármacos , Potasio/metabolismo , Ratas
8.
J Bioenerg Biomembr ; 42(5): 381-6, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20725852

RESUMEN

Ca²+ loading in mitochondria promotes the opening of a non-selective transmembrane pathway. Permeability transition is also associated with the interaction of cyclophilin D at the internal surface of the non-specific transmembrane pore. This interaction is circumvented by cyclosporin A and ADP. Our results show that, in the absence of ADP, liver mitochondria were unable to retain Ca²+, they underwent a fast and large amplitude swelling, as well as a rapid collapse of the transmembrane potential. In contrast, in the absence of ADP, kidney mitochondria retained Ca²+, swelling did not occur, and the collapse of the membrane potential was delayed. Ca²+ efflux was reversed by the addition of ADP and cyclosporin A. Our findings indicate that the differences between liver and kidney mitochondria are due to the low association of cyclophilin D to the ADP/ATP carrier found in kidney mitochondria as compared to liver mitochondria.


Asunto(s)
Adenosina Difosfato/metabolismo , Calcio/metabolismo , Riñón/metabolismo , Hígado/metabolismo , Mitocondrias/metabolismo , Animales , Peptidil-Prolil Isomerasa F , Ciclofilinas/metabolismo , Ciclosporina/metabolismo , Potencial de la Membrana Mitocondrial/fisiología , Ratas , Espectrofotometría
9.
Arch Biochem Biophys ; 494(2): 184-91, 2010 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-19995548

RESUMEN

The mitochondrial permeability transition (PT) involves the opening of a mitochondrial unselective channel (MUC) resulting in membrane depolarization and increased permeability to ions. PT has been observed in many, but not all eukaryotic species. In some species, PT has been linked to cell death, although other functions, such as matrix ion detoxification or regulation of the rate of oxygen consumption have been considered. The identification of the proteins constituting MUC would help understand the biochemistry and physiology of this channel. It has been suggested that the mitochondrial phosphate carrier is a structural component of MUC and we decided to test this in yeast mitochondria. Mersalyl inhibits the phosphate carrier and it has been reported that it also triggers PT. Mersalyl induced opening of the decavanadate-sensitive Yeast Mitochondrial Unselective Channel (YMUC). In isolated yeast mitochondria from a phosphate carrier-null strain the sensitivity to both phosphate and mersalyl was lost, although the permeability transition was still evoked by ATP in a decavanadate-sensitive fashion. Polyethylene glycol (PEG)-induced mitochondrial contraction results indicated that in mitochondria lacking the phosphate carrier the YMUC is smaller: complete contraction for mitochondria from the wild type and the mutant strains was achieved with 1.45 and 1.1 kDa PEGs, respectively. Also, as expected for a smaller channel titration with 1.1 kDa PEG evidenced a higher sensitivity in mitochondria from the mutant strain. The above data suggest that the phosphate carrier is the phosphate sensor in YMUC and contributes to the structure of this channel.


Asunto(s)
Proteínas de Transporte de Fosfato/metabolismo , Canales de Potasio/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Animales , Mersalil/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Dilatación Mitocondrial/efectos de los fármacos , Permeabilidad/efectos de los fármacos , Proteínas de Transporte de Fosfato/antagonistas & inhibidores , Fosfatos/metabolismo , Polietilenglicoles/farmacología , Canales de Potasio/química , Canales de Potasio/deficiencia , Canales de Potasio/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Eliminación de Secuencia , Vanadatos/farmacología , Canales Aniónicos Dependientes del Voltaje/metabolismo
10.
Biochem Res Int ; 2020: 5253108, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33489376

RESUMEN

Mitochondrial permeability transition is characterized by the opening of a transmembranal pore that switches membrane permeability from specific to nonspecific. This structure allows the free traffic of ions, metabolites, and water across the mitochondrial inner membrane. The opening of the permeability transition pore is triggered by oxidative stress along with calcium overload. In this work, we explored if oxidative stress is a consequence, rather than an effector of the pore opening, by evaluating the interaction of agaric acid with the adenine nucleotide translocase, a structural component of the permeability transition pore. We found that agaric acid induces transition pore opening, increases the generation of oxygen-derived reactive species, augments the oxidation of unsaturated fatty acids in the membrane, and promotes the detachment of cytochrome c from the inner membrane. The effect of agaric acid was inhibited by the antioxidant tamoxifen in association with decreased binding of the thiol reagent eosin-3 maleimide to the adenine nucleotide translocase. We conclude that agaric acid promotes the opening of the pore, increasing ROS production that exerts oxidative modification of critical thiols in the adenine nucleotide translocase.

11.
Cell Biochem Biophys ; 51(2-3): 81-7, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18649145

RESUMEN

In this work, we studied the effect of N-ethylmaleimide on permeability transition. The findings indicate that the amine inhibited the effects of carboxyatractyloside and agaric acid. It is known that these reagents interact with the adenine nucleotide carrier through the cytosolic side. When oleate, which interacts through the matrix side, was used it was found that the amine amplified the effects of oleate on permeability transition. The results also show that N-ethylmaleimide strengthened the inhibition induced by carboxyatractyloside, agaric acid, and oleate on ADP exchange. Furthermore, it was also found that oleate improved the binding of eosin-5-maleimide on the adenine nucleotide translocase.


Asunto(s)
Atractilósido/análogos & derivados , Ácido Cítrico/análogos & derivados , Etilmaleimida/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Dilatación Mitocondrial/efectos de los fármacos , Ácido Oléico/farmacología , Permeabilidad/efectos de los fármacos , Adenosina Difosfato/metabolismo , Atractilósido/metabolismo , Atractilósido/farmacología , Calcio/metabolismo , Ácido Cítrico/farmacología , Eosina Amarillenta-(YS)/análogos & derivados , Eosina Amarillenta-(YS)/metabolismo , Translocasas Mitocondriales de ADP y ATP/agonistas , Translocasas Mitocondriales de ADP y ATP/metabolismo
12.
Cell Biochem Biophys ; 76(4): 445-450, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30159781

RESUMEN

Several studies have demonstrated that the mitochondrial membrane switches from selective to non-selective permeability because of its improved matrix Ca2+ accumulation and oxidative stress. This process, known as permeability transition, evokes severe dysfunction in mitochondria through the opening of a non-specific pore, whose chemical nature is still under discussion. There are some proposals regarding the components of the pore structure, e.g., the adenine nucleotide translocase and dimers of the F1 Fo-ATP synthase. Our results reveal that Ca2+ induces oxidative stress, which not only increases lipid peroxidation and ROS generation but also brings about both the collapse of the transmembrane potential and the membrane release of cytochrome c. Additionally, it is shown that Ca2+ increases the binding of the probe eosin-5-maleimide to adenine nucleotide translocase. Interestingly, these effects are diminished after the addition of ADP. It is suggested that pore opening is caused by the binding of Ca2+ to the adenine nucleotide translocase.


Asunto(s)
Calcio/farmacología , Mitocondrias/metabolismo , Translocasas Mitocondriales de ADP y ATP/metabolismo , Estrés Oxidativo/efectos de los fármacos , Adenosina Difosfato/metabolismo , Adenosina Difosfato/farmacología , Animales , Citocromos c/metabolismo , Riñón/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Translocasas Mitocondriales de ADP y ATP/química , Unión Proteica , Ratas , Especies Reactivas de Oxígeno/metabolismo , Succinato Deshidrogenasa/química , Succinato Deshidrogenasa/metabolismo , Superóxido Dismutasa/antagonistas & inhibidores , Superóxido Dismutasa/metabolismo
13.
Cell Biochem Biophys ; 49(2): 84-90, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17906363

RESUMEN

The purpose of this work was addressed to provide new information on the effect of thiol reagents on mitochondrial non-specific pore opening, and its response to cyclosporin A (CSA). To meet this proposal phenylarsine oxide (PHA) and mersalyl were employed as tools to induce permeability transition and CSA to inhibit it. PHA-induced mitochondrial dysfunction, characterized by Ca2+ efflux, swelling, and membrane de-energization, was inhibited by N-ethylmaleimide and CSA. Conversely, mersalyl failed to inhibit the inducing effect of phenylarsine oxide, it rather strengthened it. In addition, the effect of mersalyl was associated with cross-linking of membrane proteins. The content of membrane thiol groups accessible to react with PHA, mersalyl, and PHA plus mersalyl was determined. In all situations, permeability transition was accompanied by a significant decrease in the whole free membrane thiol content. Interestingly, it is also shown that mersalyl hinders the protective effect of cyclosporin A on PHA-induced matrix Ca2+ efflux.


Asunto(s)
Arsenicales/farmacología , Ciclosporina/farmacología , Activación del Canal Iónico/efectos de los fármacos , Mersalil/farmacología , Membranas Mitocondriales/metabolismo , Animales , Calcio/metabolismo , Reactivos de Enlaces Cruzados , Etilmaleimida/farmacología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Translocasas Mitocondriales de ADP y ATP/metabolismo , Membranas Mitocondriales/efectos de los fármacos , Dilatación Mitocondrial/efectos de los fármacos , Permeabilidad/efectos de los fármacos , Porinas/metabolismo , Unión Proteica/efectos de los fármacos , Ratas , Compuestos de Sulfhidrilo/química , Reactivos de Sulfhidrilo/química , Reactivos de Sulfhidrilo/farmacología
14.
Life Sci ; 81(14): 1160-6, 2007 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-17870132

RESUMEN

In the present work, we show that after induction of mitochondrial damage by oxidative stress, in the presence of calcium, matrix DNA content decreased to 42+/-6%. Mitochondrial damage was analyzed by measuring aconitase activity, a marker enzyme of mitochondrial oxidative stress. The genes were identified by amplifying them through the polymerase chain reaction (PCR), using specific primers for each mitochondrial gene (MTCO1, MTCO2, MTCO3, MTND3, MTND5, MTATP6, MTATP8, and MTCYB). The results show that after oxidative stress, the amount of MTCO1, MTND3, and MTCYB genes in the mitochondria approximately decreased by 46, 22, and 54%, respectively. This effect was inhibited in the presence of cyclosporin A. These genes were found outside the mitochondria after permeability transition was induced. Mitochondrial integrity was evaluated by observing the activity of adenylate kinase and malate dehydrogenase.


Asunto(s)
ADN Mitocondrial/metabolismo , Genes Mitocondriales , Mitocondrias/genética , Estrés Oxidativo , Animales , Transporte Biológico/efectos de los fármacos , Calcio/metabolismo , Ciclosporina/farmacología , ADN Mitocondrial/genética , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Dilatación Mitocondrial , Estrés Oxidativo/genética , Permeabilidad , Ratas
15.
Life Sci ; 80(14): 1252-8, 2007 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-17303178

RESUMEN

Massive Ca(2+) accumulation in mitochondria, plus the stimulating effect of an inducing agent, i.e., oxidative stress, induces the so-called permeability transition, which is characterized by the opening of a nonspecific pore. This work was aimed at studying the influence of thyroid hormone on the opening of such a nonspecific pore in kidney mitochondria, as induced by an oxidative stress. To meet this objective, membrane permeability transition was examined in mitochondria isolated from kidney of euthyroid and hypothyroid rats, after a period of ischemia/reperfusion. It was found that mitochondria from hypothyroid rats were able to retain accumulated Ca(2+) to sustain a transmembrane potential after Ca(2+) addition, as well as to maintain matrix NAD(+) and membrane cytochrome c content. The protective effect of hypothyroidism was clearly opposed to that occurring in ischemic reperfused mitochondria from euthyroid rats. Our findings demonstrate that these mitochondria were unable to preserve selective membrane permeability, except when cyclosporin A was added. It is proposed that the protection is conferred by the low content of cardiolipin found in the inner membrane. This phospholipid is required to switch adenine nucleotide translocase from specific carrier to a non-specific pore.


Asunto(s)
Hipotiroidismo/metabolismo , Riñón/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Daño por Reperfusión/metabolismo , Animales , Calcio/metabolismo , Cardiolipinas/metabolismo , Ciclosporina/farmacología , Citocromos c/metabolismo , Modelos Animales de Enfermedad , Inyecciones Intraperitoneales , Riñón/patología , Proteínas de Transporte de Membrana Mitocondrial/efectos de los fármacos , Membranas Mitocondriales/efectos de los fármacos , Membranas Mitocondriales/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , NAD/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas , Daño por Reperfusión/patología , Tiroidectomía , Proteína X Asociada a bcl-2/metabolismo
16.
Arch Cardiol Mex ; 77 Suppl 4: S4-77-81, 2007.
Artículo en Español | MEDLINE | ID: mdl-18938702

RESUMEN

INTRODUCTION: The results presented in this study indicate that the immunosuppressor cyclosporine A acts as a cardioprotective drug. METHODS: This effect was analyzed during development of reperfusion-induced arrhythmias after 5 min period of coronary ligation in hearts of rats under anesthesia. RESULTS: The results indicate that cyclosporine inhibits Ca(2+)-induced mitochondrial damage; furthermore, when given before coronary occlusion, at a dose of 20 mg/kg, effectively protects against the high incidence of arrhythmias and the fall in blood pressure induced by reperfusion. In addition, it inhibits the delivery of lactic dehydrogenase and creatine kinase enzymes to the plasma. CONCLUSIONS: We propose that the protective effect could be related with its well documented action to restrain Ca(2+)-induced damage of mitochondrial functions.


Asunto(s)
Ciclosporina/uso terapéutico , Inmunosupresores/uso terapéutico , Daño por Reperfusión Miocárdica/prevención & control , Animales , Ciclosporina/farmacología , Inmunosupresores/farmacología , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Permeabilidad/efectos de los fármacos , Ratas , Ratas Wistar
17.
Comp Biochem Physiol B Biochem Mol Biol ; 144(4): 442-50, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16762575

RESUMEN

Inner membrane mitochondria undergo a permeability increase elicited after the opening of a nonspecific pore due to supraphysiological matrix Ca2+ load, and the presence of an inducer. Multiple inducers have been used to promote the transition in permeability; among them are carboxyatractyloside (CAT) and reactive oxygen-derived species. In contrast, inhibitors such as ADP and cyclosporin A have been commonly used. In this work, we show that the opening or closure of the nonspecific pore depends on the cationic composition of the incubation medium. It was found that when mitochondria were incubated in either 125 mM KCl or 125 mM LiCl, ADP was essential to maintain selective membrane permeability. Interestingly, the nucleotide was not required when the medium contained 125 mM NaCl. Furthermore, it was established that CAT promotes membrane leakage in K(+)- or Li(+)-incubated mitochondria, while it failed to do so in Na(+)-incubated mitochondria. Evidence is also presented on the ability of Na+ to induce resistance in mitochondria against membrane damage by oxidative stress. Mitochondrial Ca2+ discharge, swelling, and transmembrane electric gradient were analyzed to establish permeability transition. It is concluded that the protection provided by Na+ was accomplished by inducing matrix K+ depletion, which, in turn, diminished the free fraction of matrix Ca2+.


Asunto(s)
Mitocondrias/metabolismo , Potasio/metabolismo , Sodio/farmacología , Adenosina Difosfato/farmacología , Animales , Atractilósido/análogos & derivados , Atractilósido/farmacología , Calcio/fisiología , Cationes Monovalentes , Técnicas In Vitro , Corteza Renal/metabolismo , Corteza Renal/ultraestructura , Litio/farmacología , Potenciales de la Membrana , Mitocondrias/efectos de los fármacos , Membranas Mitocondriales/metabolismo , Dilatación Mitocondrial , Estrés Oxidativo , Permeabilidad , Potasio/farmacología , Ratas , Desacopladores/farmacología
18.
Mitochondrion ; 5(4): 272-81, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16050990

RESUMEN

The effect of agaric acid as inducer of mitochondrial permeability transition was studied. It was found that: (i) agaric acid (AA) promoted efflux of accumulated Ca2+, collapse of transmembrane potential, and mitochondrial swelling; (ii) these effects depend on membrane fluidity; (iii) ADP inhibited the effect of AA on Ca2+ efflux, and (iv) AA blocked binding of the sulfhydryl reagent, eosin-5-maleimide, to the adenine nucleotide translocase. It is proposed that AA induces pore opening through binding of the citrate moiety to the ADP/ATP carrier; this interaction must be stabilized by insertion of the alkyl chain in the lipid milieu of the membrane.


Asunto(s)
Ácido Cítrico/análogos & derivados , Membranas Intracelulares/fisiología , Fluidez de la Membrana/fisiología , Mitocondrias/fisiología , Translocasas Mitocondriales de ADP y ATP/efectos de los fármacos , Adenosina Difosfato/farmacología , Animales , Calcio/metabolismo , Ácido Cítrico/antagonistas & inhibidores , Ácido Cítrico/farmacología , Eosina Amarillenta-(YS)/análogos & derivados , Eosina Amarillenta-(YS)/metabolismo , Membranas Intracelulares/efectos de los fármacos , Cetocolesteroles/farmacología , Fluidez de la Membrana/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/ultraestructura , Translocasas Mitocondriales de ADP y ATP/metabolismo , Dilatación Mitocondrial/efectos de los fármacos , Ratas , Reactivos de Sulfhidrilo/metabolismo , Temperatura
19.
Life Sci ; 76(24): 2873-80, 2005 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-15808887

RESUMEN

This study shows that under oxidative stress DNA from liver mitochondria (mtDNA) can be released through the non-specific permeability transition pore. Pore opening was induced after the addition of Fe2+ and hydrogen peroxide, in the presence of calcium ions. Under these conditions mitochondria undergo large extent swelling, accompanied by the generation of thiobarbituric acid-reactive substances. It was observed that mtDNA was hydrolyzed after the oxidative stress, and it is proposed that some of the fragments were released from the matrix, in such a way that approximately 12% of the total mtDNA remained in the mitochondria. The remaining genetic material was analyzed, after its extraction in an agarose gel. The fragments released were smaller that 1000 bp, by analysis in a native 8% polyacrilamide gel. The presence of cyclosporin A, that inhibited permeability transition, also inhibited mtDNA release by roughly 52%.


Asunto(s)
ADN Mitocondrial/metabolismo , Mitocondrias Hepáticas/metabolismo , Dilatación Mitocondrial/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Adenilato Quinasa/metabolismo , Animales , Transporte Biológico/efectos de los fármacos , Transporte Biológico/fisiología , Ciclosporina/farmacología , Electroforesis en Gel de Agar , Peróxido de Hidrógeno/toxicidad , Hierro/toxicidad , Peroxidación de Lípido/efectos de los fármacos , Estrés Oxidativo/fisiología , Permeabilidad , Ratas , Espectrofotometría , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
20.
Life Sci ; 139: 108-13, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26316446

RESUMEN

AIMS: Mitochondrial permeability transition is a process established through massive Ca(2+) load in addition to an inducer reagent. Ebselen (Ebs), an antioxidant seleno compound, has been introduced as a reagent which inhibits mitochondrial dysfunction induced by permeability transition. Paradoxically enough, it has been shown that Ebs may also be able to induce the opening of the mitochondrial non-selective pores. This study was performed with the purpose of establishing the membrane system involved in Ebs-induced pore opening. MAIN METHODS: Permeability transition was appraised by analyzing the following: i) matrix Ca(2+) release, and mitochondrial swelling, ii) efflux of cytochrome c, and iii) the inhibition of superoxide dismutase. All of these adverse reactions were inhibited by N-ethylmaleimide and cyclosporin A. KEY FINDINGS: At concentrations from 5 to 20 µM, we found that Ebs induces non-specific membrane permeability. Remarkably, Ebs blocks the binding of the fluorescent reagent eosin-5-maleimide to the thiol groups of the adenine nucleotide translocase. SIGNIFICANCE: Based on the above, it is tempting to hypothesize that Ebs induces pore opening through its binding to the ADP/ATP carrier.


Asunto(s)
Antioxidantes/farmacología , Azoles/farmacología , Mitocondrias/efectos de los fármacos , Translocasas Mitocondriales de ADP y ATP/metabolismo , Dilatación Mitocondrial/efectos de los fármacos , Compuestos de Organoselenio/farmacología , Permeabilidad/efectos de los fármacos , Animales , Atractilósido , Calcio/metabolismo , Isoindoles , Mitocondrias/metabolismo , Ratas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda