Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Environ Res ; 227: 115744, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-36963711

RESUMEN

This study investigated the effect of Nb doping into V2O5-WO3/TiO2 (VWT) catalyst for removing NOxvia the SCR (selective catalytic reduction) by NH3. The experimental results exhibited that Nb can improve the reactivity of the VWT catalyst at low temperatures. The addition of Nb also enhanced the tolerance to SO2 and H2O. The de-NOx efficiency of the V2O5-WO3-Nb2O5/TiO2 (VWNbT) catalyst was increased up to 12% over that of the VWT catalyst at 240 °C when the catalyst was poisoned for 24 h. The prepared catalysts were characterized by FT-IR, XRD, XPS, and N2 physisorption, elemental analysis. The results showed that the ammonium bisulfate (ABS) was less formed in the VWNbT than in the VWT. Moreover, evolved gas analysis was performed to examine the thermal decomposition behavior of the poisoned catalyst, and confirmed that the ABS deposited on the catalyst was sufficiently decomposed between about 300 and 400 °C. In particular, to most effectively recover the characteristics and activity of the catalysts, thermal treatment at a temperature of 400 °C is suitable.


Asunto(s)
Amoníaco , Niobio , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Titanio , Catálisis
2.
Environ Res ; 227: 115706, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-36931381

RESUMEN

The catalytic ozonation of methylethylketone (MEK) was performed at the room temperature (25 °C) using the synthesized Mn and Cu-loaded zeolite (ZSM-5, SiO2/Al2O3 = 80) catalysts. The ZSM-5 zeolite was used as a porous support material due to the large surface area and high capacity for adsorption of volatile organic compounds. Since Mn and Cu-loaded zeolite catalysts were effective for the catalytic ozonation of VOCs such as MEK, according to the loaded concentration of Mn and Cu, there are four types of metal loaded ZSM5 catalysts synthesized [5 wt% Mn/ZSM-5, 5 wt% Cu/ZSM-5, 5 wt% Mn-1 wt% Cu/ZSM-5 (5Mn1CuZSM), and 5 wt% Cu-1 wt% Mn/ZSM-5]. The catalytic efficiency for the removal of MEK and ozonation using the different catalysts was also studied. Based on various experimental analysis processes, the characteristics of the synthesized catalysts were explored and the removal efficiencies of MEK and O3 together with the COx concentration generated from the destruction of MEK and O3 were explored. The results for the decomposition of MEK and O3 at the room temperature indicated that the Mn dominant ZSM-5 catalysts showed better efficiency for the conversion of MEK and O3. The 5 wt% Mn/ZSM-5 outweighed the rest of them for the removal of MEK while the 5Mn1CuZSM showed the best catalytic reactivity for the conversion of O3 and the CO2 selectivity. It was ascertained that during the reaction time of catalyst and reactants of 120 min the Mn dominantly deposited bimetallic catalyst, 5Mn1CuZSM, was determined as the most effective for the removal of MEK and O3 due to the high capability of production of Mn3+ species and more available adsorbed oxygen sites compared to the other catalysts. Finally, the durability measurement for the 5Mn1CuZSM catalyst was performed together with the produced CO and CO2 concentration for 420 min.


Asunto(s)
Ozono , Zeolitas , Dióxido de Silicio , Dióxido de Carbono , Porosidad , Quinasas de Proteína Quinasa Activadas por Mitógenos , Catálisis
3.
Environ Res ; 172: 658-664, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30878737

RESUMEN

Lignocellulosic biomass is an abundant renewable energy source that can be converted into various liquid fuels via thermochemical processes such as pyrolysis. Pyrolysis is a thermal decomposition method, in which solid biomass are thermally depolymerized to liquid fuel called bio-oil or pyrolysis oil. However, the low quality of pyrolysis oil caused by its high oxygen content necessitates further catalytic upgrading to increase the content of oxygen-free compounds, such as aromatic hydrocarbons. Among the three different types of lignocellulosic biomass components (hemicellulose, lignin, and cellulose), lignin is the most difficult fraction to be pyrolyzed because of its highly recalcitrant structure for depolymerization, forming a char as a main product. The catalytic conversion of lignin-derived pyrolyzates is also more difficult than that of furans and levoglucosan which are the main pyrolysis products of hemicellulose and cellulose. Hence, the main purpose of this study was to develop a bench-scale catalytic pyrolysis process using a tandem catalyst (both in-situ and ex-situ catalysis mode) for an efficient pyrolysis and subsequent upgrading of lignin components. While HZSM-5 was employed as an ex-situ catalyst for its excellent aromatization efficiency, the potential of the low-cost additives of bentonite, olivine, and spent FCC as in-situ catalysts in the Kraft lignin pyrolysis at 500 °C was investigated. The effects of these in-situ catalysts on the product selectivity were studied; bentonite resulted in higher selectivity to aromatic hydrocarbons compared to olivine and spent FCC. The reusability of HZSM-5 (with and without regeneration) was examined in the pyrolysis of lignin mixed with the in-situ catalysts of bentonite, olivine, and spent FCC. In the case of using bentonite and spent FCC as in-situ catalysts, there were no obvious changes in the activity of HZSM-5 after regeneration, whereas using olivine as in-situ catalyst resulted in a remarkable decrease in the activity of HZSM-5 after regeneration.


Asunto(s)
Bentonita , Compuestos de Hierro , Lignina , Compuestos de Magnesio , Aceites de Plantas , Polifenoles , Silicatos , Bentonita/química , Biocombustibles , Biomasa , Catálisis , Arcilla/química , Calor , Compuestos de Hierro/química , Lignina/química , Compuestos de Magnesio/química , Aceites de Plantas/química , Polifenoles/química , Silicatos/química
4.
Molecules ; 21(10)2016 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-27763524

RESUMEN

The aim of this study was to prepare a solid dispersion formulation of curcumin to enhance its solubility, dissolution rate, and oral bioavailability. The formulation was prepared with d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) and mannitol using solvent evaporation and freeze-drying methods, which yielded a solid dispersion composed of curcumin, TPGS, and mannitol at a ratio of 1:10:15 (w/w/w). The solubility and dissolution rate of the curcumin solid dispersion markedly improved compared with those of curcumin powder and a physical mixture of curcumin, TPGS, and mannitol. About 90% of the curcumin was released from the solid dispersion formulation within 10 min. After administering the formulation orally to rats, higher plasma concentrations of curcumin were observed, with increases in the maximum plasma concentration (Cmax) and area under the plasma concentration-time curve (AUC) of 86- and 65-fold, respectively, compared with those of curcumin powder. The solid dispersion formulation effectively increased intestinal permeability and inhibited P-gp function. These effects increased the anti-proliferative effect of curcumin in MDA-MB-231 breast cancer cells. Moreover, 2 h incubation with curcumin powder, solid dispersion formulation, and its physical mixture resulted in differential cytotoxic effect of paclitaxel in P-gp overexpressed LLC-PK1-P-gp and MDA-MB-231 cells through the inhibition of P-gp-mediated paclitaxel efflux. In conclusion, compared with curcumin, a solid dispersion formulation of curcumin with TPGS and mannitol could be a promising option for enhancing the oral bioavailability and efficacy of curcumin through increased solubility, dissolution rate, cell permeability, and P-gp modulation.


Asunto(s)
Curcumina/administración & dosificación , Curcumina/farmacocinética , Manitol/administración & dosificación , Polietilenglicoles/química , Ácido Succínico/química , alfa-Tocoferol/administración & dosificación , Administración Oral , Animales , Disponibilidad Biológica , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Química Farmacéutica/métodos , Curcumina/farmacología , Formas de Dosificación , Humanos , Manitol/química , Ratas , Solubilidad , alfa-Tocoferol/química
5.
Biol Pharm Bull ; 38(2): 208-17, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25747979

RESUMEN

To overcome the low oral bioavailability of morin, a mixed micelle formulation with pharmaceutical excipients that facilitate solubilization and modulate P-glycoprotein (P-gp) was developed and evaluated in vitro and in vivo rats. Morin-loaded mixed micelle formulation with a morin-PluronicF127-Tween80 ratio of 1 : 10 : 0.02 (w/w/w) was prepared by a thin-film hydration method. The solubility, size distribution, drug encapsulation efficiency, and percent drug loading of the formulation were characterized. Subsequently, in vivo pharmacokinetic parameters of morin loaded in a PluronicF127 and Tween80 mixed-micelle formulation were investigated in rats. Absolute bioavailability of morin was dramatically increased by the oral administration of morin-loaded PluronicF127 and Tween80 mixed micelle from 0.4% to 11.2% without changing the systemic clearance and half-life. In Caco-2 cells, absorption permeability of morin from the novel formulation was increased 3.6-fold compared with that of morin alone. P-gp inhibition by cyclosporine A (CsA) increased absorptive permeability of morin 2.4-fold but decreased the efflux of morin by 52%, which was consistent with increased plasma concentration of morin in the pretreatment of CsA in rats. The morin formulation inhibited P-gp transport activity by 83.1% at 100 µM as morin concentration. Moreover, morin formulation increased paracellular permeability of Lucifer yellow by 1.6-1.8 fold. In conclusion, enhanced oral bioavailability of morin from morin-loaded PluronicF127 and Tween80 mixed micelle formulation can be attributed to increased intestinal permeation of morin, which was mediated at least by P-gp inhibition and enhanced paracellular route.


Asunto(s)
Flavonoides/administración & dosificación , Flavonoides/farmacocinética , Poloxámero/administración & dosificación , Polisorbatos/administración & dosificación , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Administración Oral , Animales , Disponibilidad Biológica , Células CACO-2 , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Flavonoides/química , Humanos , Masculino , Micelas , Poloxámero/química , Polisorbatos/química , Ratas Sprague-Dawley , Solubilidad , Porcinos
6.
Environ Pollut ; 312: 119920, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35977635

RESUMEN

This study investigated catalytic ozone oxidation using a sawdust char (SDW) catalyst to remove hazardous toluene emitted from the chemical industry. The catalyst properties were analyzed by proximate, ultimate, nitrogen adsorption-desorption isotherms, Fourier-transform infrared, and X-ray photoelectron spectroscopy analyses. In addition, hydrogen-temperature programmed reduction experiments were conducted to analyze the catalyst properties. The specific area and formation of micropores of SDC were improved by applying KOH treatment. MnOx/SDC-K3 exhibited a higher toluene removal efficiency of 89.7% after 100 min than MnOx supported on activated carbon (MnOx/AC) with a removal efficiency of 6.6%. The higher (Oads (adsorbed oxygen)+Ov(vacancy oxygen))/OL (lattice oxygen) and Mn3+/Mn4+ ratios of MnOx/SDC-K3 than those of MnOx/AC seemed to be important for the catalytic oxidation of toluene.

7.
J Nanosci Nanotechnol ; 21(7): 3965-3970, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33715726

RESUMEN

In this study, the physicochemical properties of modified biochar using different methods, such as physical (CO2, steam) and chemical (KOH and H3PO4) methods, were estimated by X-ray diffraction, N2 adsorption-desorption, field-emission scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy, and Fourier transform infrared spectroscopy. The performance of chars was evaluated using a Cr adsorption performance test. Among various chars modified in this study, CHC-P modified by H3PO4 showed the highest chromium adsorption efficiency. The adsorption efficiency was affected by the high nano-porosity, large surface area, and surface oxygen-containing functional groups.


Asunto(s)
Contaminantes Químicos del Agua , Zea mays , Adsorción , Carbón Orgánico , Cromo/análisis , Cinética , Espectroscopía Infrarroja por Transformada de Fourier , Contaminantes Químicos del Agua/análisis
8.
Chemosphere ; 279: 130521, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33866093

RESUMEN

Biochar was produced by the pyrolysis of Kraft lignin at 600 °C followed by modification with CO2 at 700 and 800 °C and impregnation with FeOx. The physicochemical properties and arsenic (V) adsorption performance of biochar were evaluated. The characteristics of the lignin biochar before and after CO2 modification and FeOx impregnation were analyzed using the following methods: proximate and ultimate analysis, specific surface area (Brunauer-Emmett-Teller (BET) surface area), porosity, scanning electron microscopy and energy dispersive spectroscopy mapping, Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy. The specific surface area and porosity of biochar were improved significantly after CO2 modification. However, impregnation of FeOx in CO2-modified biochar showed a 50%-60% decrease of BET surface area and porosity due to pore blocking of FeOx. The batch adsorption of arsenic (V) showed that FeOx-LC-800 (FeOx impregnation lignin char modified with CO2 at 800 °C) had the highest adsorption efficiency among the biochars tested because of its highest Fe-O intensity and large surface area. The Langmuir adsorption model was suitable for the curve fitting arsenic (V) adsorption. The theoretical equilibrium adsorption amount (qe) was calculated to be 6.8 mg/g using a pseudo-second-order kinetic model.


Asunto(s)
Arsénico , Contaminantes Químicos del Agua , Adsorción , Dióxido de Carbono , Carbón Orgánico , Cinética , Lignina , Agua
9.
J Nanosci Nanotechnol ; 21(9): 4931-4935, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-33691893

RESUMEN

The change in the crystallinity of Ce-Ti oxide nanocatalysts with different water contents was investigated in terms of the local atomic structure and the surface atomic concentration. The crystallization of TiO2, which was induced by the hydrolysis of the Ti precursor, was observed in the catalyst synthesized via a liquid phase reaction employing a mixture of ethanol and distilled water as the solvent. The hydrolysis reaction of the Ti precursor was impeded in the solvent mixture of ethanol and anhydrous ethanol. CeO2 nanocrystallization occurred due to the suppression of the TiO2 crystal growth. Low crystallinity of the catalyst synthesized in a single anhydrous ethanol solvent was observed through the broadened X-ray diffraction (XRD) peak and the diffused ring pattern in transmission electron microscopic (TEM) images. In addition, the Ce-O and Ce-Ce bond lengths of the catalyst synthesized using the single solvent decreased beyond those of the catalysts synthesized in the mixed solvent, indicating the amorphization of the catalyst. It was also verified that the inhibition of the precursor crystallization during the synthesis led to the enhanced dispersion of the nanocatalyst, compared to the stoichiometry of the surface atomic concentration.

10.
J Nanosci Nanotechnol ; 16(5): 4370-6, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27483759

RESUMEN

The effects of CeO2 addition on the catalytic activity and the SO2 resistance of CeO2-doped MnO(x)-TiO2 catalysts were investigated for the low-temperature selective catalytic reduction (SCR) with NH3 of NO(x) emissions in marine applications. The most active catalyst was obtained from 30 wt% CeO2-MnO(x)-TiO2 catalyst in the whole temperature range of 100-300 degrees C at a low gas hourly space velocity (GHSV) of 10,000 h(-)1, and its de-NO(x) efficiency was higher than 90% over 250 degrees C. The enhanced catalytic activity may contribute to the dispersion state and catalytic acidity on the catalyst surface, and the highly dispersed Mn and Ce on the nano-scaled TiO2 catalyst affects the increase of Lewis and Brønsted acid sites. A CeO2-rich additive on MnO(x)-TiO2 could provide stronger catalytic acid sites, associated with NH3 adsorption and the SCR performance. As the results of sulfur resistance in flue gas that contains SO2, the de-NO(x) efficiency of MnO(x)-TiO2 decreased by 15% over 200 degrees C, whereas that of 30 wt% ceria-doped catalyst increased by 14-21% over 150 degrees C. The high SO2 resistance of CeO2-MnO(x)-TiO2 catalysts that resulted from the addition of ceria suppressed the formation of Mn sulfate species, which led to deactivation on the surface of nano-catalyst.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda