Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Life Sci Space Res (Amst) ; 32: 26-37, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35065758

RESUMEN

Microgravity is an ecological factor that affects the environment of the body. In this study, quantitative isobaric labeling (tandem mass tag) method was used to study the changes in human gastric mucosal cells under simulated microgravity for the first time. Comparative proteomic analysis identified 394 (202 upregulated and 192 downregulated) and 542 (286 upregulated and 256 downregulated) proteins differentially regulated by simulated microgravity after 3 and 7 days, respectively. Then the identified proteins were subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses for further exploration. The results of the analysis showed that the ribosomes of gastric mucosal cells were significantly impacted after exposure to simulated microgravity for 3 days, and the cells appeared to be in a state of stress and inflammation. Exposure to simulated microgravity for 7 days significantly affected the mitochondria of the cells, oxidative stress became more evident, while inflammation and weakened connections were observed in the cells. The results of this study highlighted the temporal response trend of gastric mucosal cells to the stressor of microgravity at the two time points of 3 and 7 days. These findings will provide insights into the development of methods to protect the gastric mucosa during space flight.


Asunto(s)
Vuelo Espacial , Ingravidez , Mucosa Gástrica , Humanos , Proteómica , Simulación de Ingravidez
2.
Biomed Res Int ; 2021: 2648065, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34195260

RESUMEN

The incidence of stomach diseases is very high, which has a significant impact on human health. Damaged gastric mucosa is more vulnerable to injury, leading to bleeding and perforation, which eventually aggravates the primary disease. Therefore, the protection of gastric mucosa is crucial. However, existing drugs that protect gastric mucosa can cause nonnegligible side effects, such as hepatic inflammation, nephritis, hypoacidity, impotence, osteoporotic bone fracture, and hypergastrinemia. Autophagy, as a major intracellular lysosome-dependent degradation process, plays a key role in maintaining intracellular homeostasis and resisting environmental pressure, which may be a potential therapeutic target for protecting gastric mucosa. Recent studies have demonstrated that autophagy played a dual role when gastric mucosa exposed to biological and chemical factors. More indepth studies are needed on the protective effect of autophagy in gastric mucosa. In this review, we focus on the mechanisms and the dual role of various biological and chemical factors regulating autophagy, such as Helicobacter pylori, virus, and nonsteroidal anti-inflammatory drugs. And we summarize the pathophysiological properties and pharmacological strategies for the protection of gastric mucosa through autophagy.


Asunto(s)
Autofagia , Mucosa Gástrica/patología , Animales , Antibacterianos/farmacología , Antiinflamatorios no Esteroideos/farmacología , Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Infecciones por Helicobacter/complicaciones , Helicobacter pylori/efectos de los fármacos , Homeostasis , Humanos , Inflamación , Lisosomas/metabolismo , Ratones , Pruebas de Sensibilidad Microbiana , Inhibidores de la Bomba de Protones/farmacología , Especies Reactivas de Oxígeno , Úlcera Gástrica/terapia , Resultado del Tratamiento
3.
In Vitro Cell Dev Biol Anim ; 56(6): 493-494, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32572847

RESUMEN

The affiliation given for Yan Cui in this article is not correct. The following is the correction affiliation.

4.
In Vitro Cell Dev Biol Anim ; 56(3): 200-212, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32198676

RESUMEN

Simulated microgravity can significantly affect various cell types and multiple systems of the human body, such as cardiovascular system, skeletal muscle system, and immune system, and is known to cause anemia and loss of electrolyte and fluids. Epidermal stem cells (EpSCs) were cultured in a rotary cell culture system (RCCS) bioreactor to simulate microgravity. The metabolites of EpSCs were identified by liquid chromatography-mass spectrometry (LC-MS). Compared with normal gravity (NG) group, a total of 57 different metabolites of EpSCs were identified (P < 0.05, VIP > 1), including lipids and lipid-like molecules (51 molecules), amino acids (5 molecules), nucleosides, nucleotides, and analogues (1 molecule). According to the partial least squares discriminant analysis (PLS-DA) score plot, a VIP > 1 and P < 0.05 were obtained for the 57 different metabolites, of which 23 molecules were significantly downregulated and 34 were significantly upregulated in simulated microgravity (SMG) group. These results showed that SMG has a significant impact on different pathways, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis indicated that multiple pathways were involved, mainly the amino acid metabolism pathway, lipid metabolism pathway, membrane transport pathway, and cell growth and death pathways. Thus, the metabolic profile of EpSCs was changed under SMG. Exploring the metabolic profile of EpSCs would be helpful to further understand the growth characteristics of EpSCs under SMG, which will provide a new approach to explore the metabolomics mechanism of stress injury and repair trauma under SMG.


Asunto(s)
Células Epidérmicas/metabolismo , Células Madre/metabolismo , Simulación de Ingravidez , Células Cultivadas , Gravitación , Humanos , Metabolismo de los Lípidos , Metaboloma , Metabolómica
5.
Oncol Lett ; 19(5): 3439-3450, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32269617

RESUMEN

The understanding into the pathogenesis and treatment of gastric cancer has improved in recent years; however, a number of limitations have delayed the development of effective treatment. Cancer cells can undergo glycolysis and inhibit oxidative phosphorylation in the presence of oxygen (Warburg effect). Previous studies have demonstrated that a rotary cell culture system (RCCS) can induce glycolytic metabolism. In addition, the potential of regulating cancer cells by targeting their metabolites has led to the rapid development of metabolomics. In the present study, human HGC-27 gastric cancer cells were cultured in a RCCS bioreactor, simulating weightlessness. Subsequently, liquid chromatography-mass spectrometry was used to examine the effects of simulated microgravity (SMG) on the metabolism of HGC-27 cells. A total of 67 differentially regulated metabolites were identified, including upregulated and downregulated metabolites. Compared with the normal gravity group, phosphatidyl ethanolamine, phosphatidyl choline, arachidonic acid and sphinganine were significantly upregulated in SMG conditions, whereas sphingomyelin, phosphatidyl serine, phosphatidic acid, L-proline, creatine, pantothenic acid, oxidized glutathione, adenosine diphosphate and adenosine triphosphate were significantly downregulated. The Human Metabolome Database compound analysis revealed that lipids and lipid-like metabolites were primarily affected in an SMG environment in the present study. Overall, the findings of the present study may aid our understanding of gastric cancer by identifying the underlying mechanisms of metabolism of the disease under SMG.

6.
Life Sci Space Res (Amst) ; 27: 74-82, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34756233

RESUMEN

BACKGROUND: Weightlessness is a component of the complex space environment. It exerts adverse effects on the human body, and may pose unknown challenges to the implementation of space missions. The regular function of the digestive system is an important checkpoint for astronauts to conduct missions. Simulated microgravity can recreate the changes experienced by the human body in a weightless environment in space to a certain extent, providing technical support for the exploration of its mechanism and a practical method for other scientific research. METHODS AND MATERIALS: In the present study, we reviewed and discussed the latest research on the effects of weightlessness or simulated microgravity on the digestive system, as well as the current challenges and future expectations for progress in medical science and further space exploration. RESULTS: A series of studies have investigated the effects of weightlessness on the human digestive system. On one hand, weightlessness and the changing space environment may exert certain adverse effects on the human body. Studies based on cells or animals have demonstrated the complex effects on the human digestive system in response to weightlessness. On the other hand, a microgravity environment also facilitates the ideation of novel concepts for research in the domain of life science. CONCLUSION: The effects of weightlessness on the digestive system are considerably complicated. The emergence of methods that help simulate a weightless environment provides a more convenient alternative for assessing the impact and the mechanism underlying the effect of weightlessness on the human body. In addition, the simulated microgravity environment facilitates the ideation of novel concepts for application in regenerative medicine and other fields of life science.


Asunto(s)
Disciplinas de las Ciencias Biológicas , Vuelo Espacial , Ingravidez , Animales , Astronautas , Sistema Digestivo , Humanos , Ingravidez/efectos adversos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda