Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
FEBS Lett ; 259(2): 263-8, 1990 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-1688416

RESUMEN

A small conductance chloride channel has been identified on the apical membrane of porcine thyroid cells using the patch-clamp technique. In cell attached membrane patches with NaCl in the pipette, the single channel conductance is 5.5 pS. The channel is highly selective for chloride over gluconate and iodide, and is impermeable to Na+, K+ and tetraethylammonium ions. The open state probability of the channel is not affected by voltage. The channel activity disappears after excision of the patch. The Cl- channel blocker 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB) did not affect the activity of the thyroid Cl- channels. Treatment of thyroid cells with 8-(4-chlorophenylthio)adenosine-3',5'-cyclic monophosphate (8-chloro-cAMP) (0.5 mM) prior to giga-seal formation increased Cl- channel activity in the apical membrane of thyroid cells.


Asunto(s)
Cloruros/fisiología , Canales Iónicos/fisiología , Proteínas de la Membrana/fisiología , Glándula Tiroides/fisiología , Animales , Membrana Celular/fisiología , Células Cultivadas , Canales de Cloruro , Canales Iónicos/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Nitrobenzoatos/farmacología , Porcinos
2.
J Hypertens ; 15(10): 1091-100, 1997 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-9350583

RESUMEN

OBJECTIVE: To investigate the clinical, biologic, and molecular abnormalities in a family with Liddle's syndrome and analyze the short- and long-term efficacies of amiloride treatment. PATIENTS: The pedigree consisted of one affected mother and four children, of whom three suffered from early-onset and moderate-to-severe hypertension. METHODS: In addition to the biochemical and hormonal measurements, genetic analysis of the carboxy terminus of the beta subunit of the epithelial sodium channel (beta ENaC) was conducted through single-strand conformation analysis and direct sequencing. The functional properties of the mutation were analyzed using the Xenopus expression system and compared with one mutation affecting the proline-rich sequence of the beta ENaC. RESULTS: Mild hypokalemia and suppressed levels of plasma renin and aldosterone were observed in all affected subjects. Administration of 10 mg/day amiloride for 2 months normalized the blood pressure and plasma potassium levels of all of the affected subjects, whereas their plasma and urinary aldosterone levels remained surprisingly low. A similar pattern was observed after 11 years of follow-up, but a fivefold increase in plasma aldosterone was observed under treatment with 20 mg/day amiloride for 2 weeks. Genetic analysis of the beta ENaC revealed a deletion of 32 nucleotides that had modified the open reading frame and introduced a stop codon at position 582. Expression of this beta 579del32 mutant caused a 3.7 +/- 0.3-fold increase in the amiloride-sensitive sodium current, without modification of the unitary properties of the channel. A similar increase was elicited by one mutation affecting the carboxy terminus of the beta ENaC. CONCLUSIONS: This new mutation leading to Liddle's syndrome highlights the importance of the carboxy terminus of the beta ENaC in the activity of the epithelial sodium channel. Small doses of amiloride are able to control the blood pressure on a long-term basis in this monogenic form of hypertension.


Asunto(s)
Hipertensión/genética , Hipoaldosteronismo/genética , Hipopotasemia/genética , Adolescente , Adulto , Amilorida/uso terapéutico , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Sondas de ADN/química , ADN Complementario/análisis , Diuréticos/uso terapéutico , Femenino , Expresión Génica , Genotipo , Humanos , Hipertensión/tratamiento farmacológico , Hipertensión/fisiopatología , Hipoaldosteronismo/tratamiento farmacológico , Hipoaldosteronismo/fisiopatología , Hipopotasemia/tratamiento farmacológico , Hipopotasemia/fisiopatología , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Linaje , Fenotipo , Renina/sangre , Eliminación de Secuencia , Canales de Sodio/efectos de los fármacos , Canales de Sodio/genética , Canales de Sodio/fisiología , Síndrome , Xenopus laevis
3.
Ann N Y Acad Sci ; 868: 67-76, 1999 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-10414282

RESUMEN

H(+)-gated cation channels are members of a new family of ionic channels, which includes the epithelial Na+ channel and the FMRFamide-activated Na+ channel. ASIC, the first member of the H(+)-gated Na+ channel subfamily, is expressed in brain and dorsal root ganglion cells (DRGs). It is activated by pHe variations below pH 7. The presence of this channel throughout the brain suggests that the H+ might play an essential role as a neurotransmitter or neuromodulator. The ASIC channel is also present in dorsal root ganglion cells, as is its homolog DRASIC, which is specifically present in DRGs and absent in the brain. Since external acidification is a major factor in pain associated with inflammation, hematomas, cardiac or muscle ischemia, or cancer, these two channel proteins are potentially central players in pain perception. ASIC activates and inactivates rapidly, while DRASIC has both a fast and sustained component. Other members of this family such as MDEG1 and MDEG2 are either H(+)-gated Na+ channels by themselves (MDEG1) or modulators of H(+)-gated channels formed by ASIC and DRASIC. MDEG1 is of particular interest because the same mutations that produce selective neurodegeneration in C. elegans mechanosensitive neurons, when introduced in MDEG1, also produce neurodegeneration. MDEG2 is selectively expressed in DRGs, where it assembles with DRASIC to radically change its biophysical properties, making it similar to the native H(+)-gated channel, which is presently the best candidate for pain perception.


Asunto(s)
Encéfalo/metabolismo , Proteínas de la Membrana , Canales de Sodio/metabolismo , Canales Iónicos Sensibles al Ácido , Secuencia de Aminoácidos , Animales , Encéfalo/citología , Canales de Sodio Degenerina , Canales Epiteliales de Sodio , Ganglios Espinales/metabolismo , Hibridación in Situ , Canales Iónicos/metabolismo , Datos de Secuencia Molecular , Mutación , Proteínas del Tejido Nervioso/metabolismo , Alineación de Secuencia
4.
Neurosci Lett ; 221(2-3): 85-8, 1997 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-9121706

RESUMEN

The effect of the microinjection of Xenopus oocytes with various cRNAs coding for Presenilin 1 and four mutated presenilins linked to early onset familial forms of Alzheimer's disease was examined. These cRNAs were injected either alone or in combination with the cRNA encoding betaAPP751 and the Swedish mutated form of betaAPP751 known to produce exacerbated amount of Abeta. Current-voltage relationships generated by voltage step were recorded. None of the cRNA injected alone or in combination displayed the ability to modify the current recorded with naive cells. Altogether, this study shows that Presenilin 1 does not mediate membrane currents and is more likely involved in the physiopathological maturation of betaAPP.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/farmacología , Canales Iónicos/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/farmacología , Mutación/fisiología , Oocitos/metabolismo , Animales , Humanos , Canales Iónicos/genética , Cinética , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Microinyecciones , Sondas de Oligonucleótidos , Oocitos/efectos de los fármacos , Presenilina-1 , Xenopus laevis
5.
Pflugers Arch ; 407(6): 684-90, 1986 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-3797222

RESUMEN

Voltage clamp experiments were performed on isolated frog sinus venosus trabeculae using the double mannitol gap voltage clamp technique. On hyperpolarization from the holding potential (-30, -50 mV) to various potential levels slow activation of inward current was recorded. Several basic features of this current system resemble those of the current if in mammalian pace-maker tissues. The current activates from a threshold ranging between -50, -70 mV and increases in the inward direction with the negative pulse amplitude. Conductance measurements during current development show a conductance increase. The current is strongly reduced during perfusion with Na-free medium. However, there were several important differences in its properties from those of the if current in other preparations. Ba in concentrations of 0.3-5 mM reduces the amplitude of the inward current in a concentration-dependent manner. Cs in low concentration range (1-10 mM) fails to have any effect on the time dependent current. Cs concentrations higher than 10 mM increase the current amplitude in a dose-dependent manner. The current increase induced by Cs still remains in Na-free solution and is not affected by Cl replacement. These results suggest that Cs may carry inward current. The identity of the ionic mechanism responsible for the observed current is discussed.


Asunto(s)
Bario/farmacología , Cesio/farmacología , Corazón/efectos de los fármacos , Potasio/fisiología , Sodio/fisiología , Animales , Técnicas In Vitro , Potenciales de la Membrana/efectos de los fármacos , Rana ridibunda
6.
Pflugers Arch ; 410(1-2): 159-64, 1987 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-3500456

RESUMEN

Voltage clamp experiments were carried out on the sinus venosus of the frog by means of the double mannitol gap technique. The ionic mechanism underlying the slowly hyperpolarization-activated inward current was investigated by changing the concentration and species of alkali cations and divalent cations in the bathing solution. Adding Rb or Cs in concentration of 10-20 mM to the control solution led to a dose-dependent increase in the inward current, as does elevating the external concentration of K from 2.5 to 25 mM. After the inward current had been nearly suppressed by completely substituting Tris for Na in the external medium, it was partially restored after a subsequent addition of K, Rb or Cs to the Na-free medium. Various alkaline earths or transition metals added to the bathing solution markedly depressed the magnitude of the inward current. This inhibitory effect varied with concentration and nature of divalent cations added. It also depended on the concentration and species of alkali cations present in the external solution. From these observations it was proposed that the conductance responsible for the inward rectification in frog sinus venosus does not discriminate among monovalent cations. The results support the existence of a weak-field-strength site located in the permeation pathway. Divalent cation may exert their inhibitory effect by competing with permeant ions for this site.


Asunto(s)
Cationes/fisiología , Corazón/fisiología , Animales , Cationes Bivalentes/fisiología , Cationes Monovalentes/fisiología , Técnicas In Vitro , Potenciales de la Membrana , Metales Alcalinos , Rana esculenta
7.
J Biol Chem ; 270(20): 11735-7, 1995 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-7744818

RESUMEN

The highly selective, amiloride-sensitive Na+ channel is formed of three homologous subunits termed alpha, beta, and gamma. The three subunits exhibit similarities with Caenorhabditis elegans proteins called degenerins involved in sensory touch transduction and, when mutated, in neurodegeneration. Swelling of neurons observed in neurodegeneration suggests an involvement of ion transport, but the channel function of degenerins has not yet been demonstrated. We used chimeras to study the functional relationship between the epithelial sodium channel and the degenerin Mec-4. Exchange of the hydrophobic domains of the Na+ channel alpha subunit by those of Mec-4 results in a functional ion channel with changed pharmacology for amiloride and benzamil and changed selectivity, conductance, gating, and voltage dependence. All of these differences were also obtained by exchanging Ser-589 and Ser-593 in the second transmembrane region by the corresponding residues of Mec-4, suggesting that these two residues are essential for the ionic pore function of the channel.


Asunto(s)
Amilorida/farmacología , Proteínas de Caenorhabditis elegans , Proteínas del Helminto/metabolismo , Proteínas de la Membrana , Proteínas Recombinantes de Fusión/metabolismo , Canales de Sodio/metabolismo , Amilorida/análogos & derivados , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/genética , Proteínas del Helminto/genética , Activación del Canal Iónico/efectos de los fármacos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Serina/química , Transducción de Señal , Bloqueadores de los Canales de Sodio , Canales de Sodio/genética
8.
Biochem Biophys Res Commun ; 176(3): 1196-203, 1991 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-1710111

RESUMEN

A non selective cation channel has been identified in the human colonic cell lines T84 and HT29D4 using the patch clamp technique. The channel is equally permeable to Na+ and K+, has a linear current-voltage relationship and a conductance of about 20 pS in symmetrical NaCl conditions. The channel is not permeable to chloride or to large organic cations such as N-methyl-D-glucamine. The open probability of the channel is voltage dependent. Cytosolic Ca2+ concentrations higher than 0.1 mM are required to activate the channel. The channel is blocked by cytosolic ATP (1 mM). 3',5-dichlorodiphenylamine-2-carboxylic acid and 5-nitro-2-(3-phenylpropylamino)-benzoic acid inhibit the channel when present on the extracellular side. The block is not voltage dependent. 3',5-dichlorodiphenylamine-2-carboxylic acid is the most potent blocker and completely inhibits channel activity at a concentration of 50 microM. The channel is insensitive to amiloride and derivatives.


Asunto(s)
Adenosina Trifosfato/farmacología , Calcio/farmacología , Canales Iónicos/fisiología , 1-Metil-3-Isobutilxantina/farmacología , Adenocarcinoma , Calcimicina/farmacología , Calcio/metabolismo , Línea Celular , Membrana Celular/fisiología , Células Clonales , Colforsina/farmacología , Neoplasias del Colon , Citosol/metabolismo , Humanos , Canales Iónicos/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos
9.
Biochem Biophys Res Commun ; 171(3): 1022-8, 1990 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-1699519

RESUMEN

Outwardly rectifying Cl- channels are present in the human colonic cell line (HT29D4). The classical Cl- channel blocker 5-nitro-2(3-phenylpropylamino)benzoate inhibits Cl- channel activity with a K0.5 value of 20 microM. Epithelial Cl- channel activity is inhibited by Ca2+ channel blockers. Phenylalkylamines are the most effective inhibitors. (+/-)Verapamil and (-)desmethoxyverapamil induce flickering and then the complete blockade of Cl- channels recorded from outside-out patches. K0.5 values are 60 microM and 100 microM for (-)desmethoxyverapamil and (+/-)verapamil, respectively. Other classes of L-type Ca2+ channel blockers have also been studied but they are less active.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Canales Iónicos/fisiología , Proteínas de la Membrana/fisiología , Adenocarcinoma , Línea Celular , Canales de Cloruro , Neoplasias del Colon , Humanos , Canales Iónicos/efectos de los fármacos , Cinética , Potenciales de la Membrana/efectos de los fármacos
10.
Nature ; 378(6558): 730-3, 1995 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-7501021

RESUMEN

The peptide Phe-Met-Arg-Phe-NH2 (FMRFamide) and structurally related peptides are present both in invertebrate and vertebrate nervous systems. Although they constitute a major class of invertebrate peptide neurotransmitters, the molecular structure of their receptors has not yet been identified. In neurons of the snail Helix aspersa, as well as in Aplysia bursting and motor neurons, FMRFamide induces a fast excitatory depolarizing response due to direct activation of an amiloride-sensitive Na+ channel. We have now isolated a complementary DNA from Helix nervous tissue; when expressed in Xenopus oocytes, it encodes an FMRFamide-activated Na+ channel (FaNaCh) that can be blocked by amiloride. The corresponding protein shares a very low sequence identity with the previously cloned epithelial Na+ channel subunits and Caenorhabditis elegans degenerins, but it displays the same overall structural organization. To our knowledge, this is the first characterization of a peptide-gated ionotropic receptor.


Asunto(s)
Canales de Sodio/genética , Amilorida/farmacología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Caenorhabditis elegans , Células Cultivadas , Clonación Molecular , ADN Complementario , FMRFamida , Caracoles Helix , Humanos , Activación del Canal Iónico , Potenciales de la Membrana , Datos de Secuencia Molecular , Neuropéptidos/fisiología , Ratas , Proteínas Recombinantes/farmacología , Bloqueadores de los Canales de Sodio , Xenopus
11.
J Biol Chem ; 273(25): 15418-22, 1998 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-9624125

RESUMEN

The mammalian degenerin MDEG1 belongs to the nematode degenerin/epithelial Na+ channel superfamily. It is constitutively activated by the same mutations that cause gain-of-function of the Caenorhabditis elegans degenerins and neurodegeneration. ASIC and DRASIC, which were recently cloned, are structural homologues of MDEG1 and behave as H+-gated cation channels. MDEG1 is also a H+-activated Na+ channel, but it differs from ASIC in its lower pH sensitivity and slower kinetics. In addition to the generation of a constitutive current, mutations in MDEG1 also alter the properties of the H+-gated current. Replacement of Gly-430 in MDEG1 by bulkier amino acids, such as Val, Phe, or Thr, drastically increases the H+ sensitivity of the channel (half-maximal pH (pHm) approximately 4.4 for MDEG1, pHm approximately 6.7 for the different mutants). Furthermore, these replacements completely suppress the inactivation observed with the wild-type channel and increase the sensitivity of the H+-gated channel to blockade by amiloride by a factor of 10 without modification of its conductance and ionic selectivity. These results as well as those obtained with other mutants clearly indicate that the region surrounding Gly-430, situated just before the second transmembrane segment, is essential for pH sensitivity and gating.


Asunto(s)
Caenorhabditis elegans/genética , Canales Iónicos/genética , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Canales de Potasio/genética , Canales de Sodio/genética , Sustitución de Aminoácidos , Animales , Caenorhabditis elegans/metabolismo , Canales de Sodio Degenerina , Canales Epiteliales de Sodio , Concentración de Iones de Hidrógeno , Canales Iónicos/metabolismo , Cinética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Proteínas del Tejido Nervioso/metabolismo , Canales de Potasio/metabolismo , Canales de Sodio/metabolismo , Xenopus
12.
J Biol Chem ; 264(13): 7663-8, 1989 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-2468671

RESUMEN

Endothelial cells from brain microvessels form the blood-brain barrier. Brain microvessels and endothelial cells isolated from rat brain microvessels express an amiloride-sensitive cationic channel that was characterized using [3H]phenamil binding and patch-clamp experiments. [3H]Phenamil, a labeled amiloride analog, recognizes a single family of binding sites with a dissociation constant of 20-30 nM and a maximum binding capacity of 8-15 pmol/mg protein. The pharmacological profile of the channel (phenamil greater than benzamil greater than amiloride) is very similar to that of the epithelium Na+ channel of mammalian kidney and of frog epithelia. Long-lasting currents were observed in patch-clamp experiments using excised outside-out patches. Application of amiloride or phenamil first produced a rapid flickering of channel activity and then its complete blockade. The mean unit channel conductance at 140 mM Na+ was 23 picosiemens. The selectivity of Na+ over K+ was estimated from reversal potentials to be 1.5:1. Properties of the channel in microvessels are clearly distinct from those of the Na+ channel of the kidney, suggesting the existence of several isoforms of cationic channels that are sensitive to amiloride and its derivatives. The low selectivity cationic channel of endothelial cells in brain microvessels might be important for controlling both Na+ and K+ movements across the blood-brain barrier.


Asunto(s)
Amilorida/farmacología , Barrera Hematoencefálica , Endotelio Vascular/fisiología , Canales Iónicos/efectos de los fármacos , Amilorida/análogos & derivados , Amilorida/metabolismo , Animales , Sitios de Unión , Bovinos , Conductividad Eléctrica , Endotelio Vascular/efectos de los fármacos , Técnicas In Vitro , Potasio/fisiología , Sodio/fisiología
13.
Eur J Biochem ; 183(3): 499-505, 1989 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-2550220

RESUMEN

Amiloride-sensitive cationic channels are present in the apical membrane of porcine thyroid cells in primary culture. An amiloride-sensitive (K0.5 = 150 +/- 28 nM where K0.5 is the concentration of unlabelled ligand which reduces the specific binding of the same labelled ligand by 50%) 22Na+-flux component (Km for Na+ at 18 mM) has been identified which was also blocked by the potent amiloride derivative phenamil (K0.5 = 47 +/- 21 nM). The most potent inhibitor of Na+/H+ exchange, ethylisopropyl-amiloride, hardly inhibited this 22Na+-influx component at a concentration of 21 microM. Amiloride binding sites were characterized using [3H]phenamil. The tritiated ligand binds to a single family of binding sites in thyroid membranes with a Kd value of 50 +/- 10 nM and a maximal binding capacity of 5 +/- 1 pmol/mg protein. Patch-clamp experiments have directly demonstrated the existence of a phenamil- and amiloride-sensitive cationic channel, with a conductance of 2.6 pS, which is permeable to sodium, but not very selective (PNa+/PK+ = 1.2). This channel is an important element in the regulation of the resting membrane potential of thyroid cells.


Asunto(s)
Amilorida/farmacología , Canales de Sodio/metabolismo , Sodio/metabolismo , Glándula Tiroides/metabolismo , Amilorida/análogos & derivados , Amilorida/metabolismo , Animales , Membrana Celular/metabolismo , Membrana Celular/fisiología , Células Cultivadas , Cinética , Potenciales de la Membrana/efectos de los fármacos , Canales de Sodio/efectos de los fármacos , Porcinos
14.
J Biol Chem ; 272(46): 28819-22, 1997 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-9360943

RESUMEN

Proton-gated cation channels are acid sensors that are present in both sensory neurons and in neurons of the central nervous system. One of these acid-sensing ion channels (ASIC) has been recently cloned. This paper shows that ASIC and the mammalian degenerin MDEG, which are colocalized in the same brain regions, can directly associate with each other. Immunoprecipitation of MDEG causes coprecipitation of ASIC. Moreover, coexpression of ASIC and MDEG subunits in Xenopus oocytes generates an amiloride-sensitive H+-gated Na+ channel with novel properties (different kinetics, ionic selectivity, and pH sensitivity). In addition, coexpression of MDEG with mutants of the ASIC subunit can create constitutively active channels that become completely nonselective for Na+ versus K+ and H+-gated channels that have a drastically altered pH sensitivity compared with MDEG. These data clearly show that ASIC and MDEG can form heteromultimeric assemblies with novel properties. Heteromultimeric assembly is probably used for creating a diversity of H+-gated cation channels acting as neuronal acid sensors in different pH ranges.


Asunto(s)
Activación del Canal Iónico , Canales Iónicos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Canales de Sodio/metabolismo , Canales Iónicos Sensibles al Ácido , Animales , Encéfalo/metabolismo , Canales de Sodio Degenerina , Canales Epiteliales de Sodio , Hibridación in Situ , Canales Iónicos/genética , Proteínas del Tejido Nervioso/genética , Protones , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Canales de Sodio/genética
15.
Nature ; 386(6621): 173-7, 1997 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-9062189

RESUMEN

Acid-sensing is associated with both nociception and taste transduction. Stimulation of sensory neurons by acid is of particular interest, because acidosis accompanies many painful inflammatory and ischaemic conditions. The pain caused by acids is thought to be mediated by H+-gated cation channels present in sensory neurons. We have now cloned a H+-gated channel (ASIC, for acid-sensing ionic channel) that belongs to the amiloride-sensitive Na+ channel/degenerin family of ion channels. Heterologous expression of ASIC induces an amiloride-sensitive cation (Na+ > Ca2+ > K+) channel which is transiently activated by rapid extracellular acidification. The biophysical and pharmacological properties of the ASIC channel closely match the H+-gated cation channel described in sensory neurons. ASIC is expressed in dorsal root ganglia and is also distributed widely throughout the brain. ASIC appears to be the simplest of ligand-gated channels.


Asunto(s)
Ácidos/metabolismo , Activación del Canal Iónico , Canales Iónicos/genética , Proteínas del Tejido Nervioso/genética , Canales Iónicos Sensibles al Ácido , Amilorida/análogos & derivados , Amilorida/farmacología , Secuencia de Aminoácidos , Animales , Encéfalo/metabolismo , Calcio/metabolismo , Calcio/farmacología , Cationes/metabolismo , Clonación Molecular , Canales de Sodio Degenerina , Electrofisiología , Canales Epiteliales de Sodio , Canales Iónicos/química , Canales Iónicos/efectos de los fármacos , Canales Iónicos/metabolismo , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Protones , ARN Mensajero/metabolismo , Ratas , Homología de Secuencia de Aminoácido , Distribución Tisular , Xenopus
16.
EMBO J ; 13(9): 2177-81, 1994 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-8187771

RESUMEN

Molecular cloning of the amiloride-sensitive Na+ channel has permitted analysis of the mechanisms of its stimulation by steroids. In rat lung cells in primary culture, where its mRNA has been detected, the activity of an amiloride-sensitive channel, highly selective for Na+, is controlled by corticosteroids. Dexamethasone (0.1 microM) or aldosterone (1 microM) induced, after a minimum 10 h treatment, a large increase of the amiloride-induced hyperpolarization and of the amiloride-sensitive current. A parallel increase in the amount of the mRNA was observed. The corresponding gene is thus a target for steroid action. Using synthetic specific agonists and antagonists for mineralo- and glucocorticoid receptors, it has been shown that the steroid action on Na+ channel expression is mediated via glucocorticoid receptors. Triiodothyronine, known to modulate steroid action in several tissues, had no effect on both the amiloride-sensitive Na+ current and the level of the mRNA for the Na+ channel protein, but potentiates the stimulatory effect of dexamethasone. The increase in Na+ channel activity observed in the lung around birth can thus be explained by a direct increase in transcription of the Na+ channel gene.


Asunto(s)
Aldosterona/farmacología , Amilorida/farmacología , Dexametasona/farmacología , Regulación de la Expresión Génica , Pulmón/metabolismo , Canales de Sodio/genética , Animales , Northern Blotting , Células Cultivadas , Clonación Molecular , Pulmón/citología , Pulmón/efectos de los fármacos , Antagonistas de Receptores de Mineralocorticoides , Ratas , Receptores de Glucocorticoides/antagonistas & inhibidores , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/metabolismo , Canales de Sodio/metabolismo
17.
J Biol Chem ; 270(46): 27411-4, 1995 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-7499195

RESUMEN

We have isolated a cDNA for a novel human amiloride-sensitive Na+ channel isoform (called delta) which is expressed mainly in brain, pancreas, testis, and ovary. When expressed in Xenopus oocytes, it generates an amiloride-sensitive Na+ channel with biophysical and pharmacological properties distinct from those of the epithelial Na+ channel, a multimeric assembly of alpha, beta, and gamma subunits. The Na+ current produced by the new delta isoform is increased by two orders of magnitude after coexpression of the beta and gamma subunit of the epithelial Na+ channel showing that delta can associate with other subunits and is part of a novel multisubunit ion channel.


Asunto(s)
Amilorida/farmacología , Canales de Sodio/biosíntesis , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Clonación Molecular/métodos , Cartilla de ADN , Electrofisiología , Femenino , Biblioteca de Genes , Humanos , Riñón/metabolismo , Sustancias Macromoleculares , Masculino , Potenciales de la Membrana/efectos de los fármacos , Datos de Secuencia Molecular , Oocitos/efectos de los fármacos , Oocitos/fisiología , Especificidad de Órganos , Reacción en Cadena de la Polimerasa , ARN Mensajero/análisis , ARN Mensajero/biosíntesis , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/efectos de los fármacos , Homología de Secuencia de Aminoácido , Canales de Sodio/química , Canales de Sodio/efectos de los fármacos , Xenopus
18.
Nephrologie ; 17(7): 389-93, 1996.
Artículo en Francés | MEDLINE | ID: mdl-9019666

RESUMEN

The amiloride-sensitive epithelial Na+ channel is formed by the assembly of three homologous subunits alpha, beta and gamma. The channel is characterized by its sensitivity to amiloride and to some amiloride derivatives, such as phenamil and benzamil, by its small unitary conductance (approximately 5pS), by its high selectivity for lithium and sodium, and by its slow kinetics. The alpha, beta, and gamma proteins share significant identity with degenerins, a family of proteins found in the mechanosensory neurons and interneurons of the nematode Caenorhabditis elegans. They are also homologous to FaNaCh, a protein from Helix aspersa nervous tissues, which corresponds to a neuronal ionotropic receptor for the Phe-Met-Arg-Phe-amide peptide. All these proteins contain a large extracellular loop, located between two transmembrane alpha-helices. The NH2 and COOH terminal segments are cytoplasmic, and contain potential regulatory segments that are able to modulate the activity of the channel. In Liddle syndrome, in which patients develop a form of genetic hypertension, mutations within the cytoplasmic COOH terminal of the beta and gamma chains of the epithelial Na+ channel lead to a hyper-activity of the channel. Epithelial Na+ channel activity is tightly controlled by several distinct hormonal systems, including corticosteroids and vasopressin. In kidney and colon, aldosterone is the major sodium-retaining hormone, acting, by stimulation of Na+ reabsorption through the epithelium. In the distal colon from steroid-treated animals, a large increase of the beta and gamma subunits transcription is observed, whereas the alpha subunit remains constitutively transcribed. In kidney, RNA levels of the three subunits are not significantly altered by aldosterone, suggesting that other mechanisms control Na+ channel activity in that tissue. In lung, the glucocorticoids are the positive regulators of the channel activity, especially around birth, and act via an increased transcription of the three subunits.


Asunto(s)
Amilorida/farmacología , Canales de Sodio , Animales , Humanos , Cinética , Canales de Sodio/química , Canales de Sodio/efectos de los fármacos , Canales de Sodio/genética , Canales de Sodio/fisiología
19.
J Biol Chem ; 272(34): 20975-8, 1997 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-9261094

RESUMEN

We have cloned and expressed a novel proton-gated Na+ channel subunit that is specific for sensory neurons. In COS cells, it forms a Na+ channel that responds to a drop of the extracellular pH with both a rapidly inactivating and a sustained Na+ current. This biphasic kinetic closely resembles that of the H+-gated current described in sensory neurons of dorsal root ganglia (1). Both the abundance of this novel H+-gated Na+ channel subunit in sensory neurons and the kinetics of the channel suggest that it is part of the channel complex responsible for the sustained H+-activated cation current in sensory neurons that is thought to be important for the prolonged perception of pain that accompanies tissue acidosis (1, 2).


Asunto(s)
Canales Iónicos/genética , Proteínas de la Membrana , Proteínas del Tejido Nervioso/genética , Neuronas Aferentes/química , Canales de Sodio/genética , Canales Iónicos Sensibles al Ácido , Secuencia de Aminoácidos , Animales , Células COS , Canales de Sodio Degenerina , Canales Epiteliales de Sodio , Concentración de Iones de Hidrógeno , Hibridación in Situ , Activación del Canal Iónico , Datos de Secuencia Molecular , Ratas , Alineación de Secuencia , Homología de Secuencia de Aminoácido
20.
J Physiol ; 519 Pt 2: 323-33, 1999 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-10457052

RESUMEN

1. A degenerate polymerase chain reaction (PCR) homology screening procedure was applied to rat brain cDNA in order to identify novel genes belonging to the amiloride-sensitive Na+ channel and degenerin (NaC/DEG) family of ion channels. A single gene was identified that encodes a protein related to but clearly different from the already cloned members of the family (18-30 % amino acid sequence identity). Phylogenetic analysis linked this protein to the group of ligand-gated channels that includes the mammalian acid-sensing ion channels and the Phe-Met-Arg-Phe-amide (FMRFamide)-activated Na+ channel. 2. Expression of gain-of-function mutants after cRNA injection into Xenopus laevis oocytes or transient transfection of COS cells induced large constitutive currents. The activated channel was amiloride sensitive (IC50, 1.31 microM) and displayed a low conductance (9-10 pS) and a high selectivity for Na+ over K+ (ratio of the respective permeabilities, PNa+/PK+ >= 10), all of which are characteristic of NaC/DEG channel behaviour. 3. Northern blot and reverse transcriptase-polymerase chain reaction (RT-PCR) analysis revealed a predominant expression of its mRNA in the small intestine, the liver (including hepatocytes) and the brain. This channel has been called the brain-liver-intestine amiloride-sensitive Na+ channel (BLINaC). 4. Corresponding gain-of-function mutations in Caenorhabditis elegans degenerins are responsible for inherited neurodegeneration in the nematode. Besides the BLINaC physiological function that remains to be established, mutations in this novel mammalian degenerin-like channel might be of pathophysiological importance in inherited neurodegeneration and liver or intestinal pathologies.


Asunto(s)
Canales Iónicos/biosíntesis , Proteínas del Tejido Nervioso/biosíntesis , Canales de Sodio/biosíntesis , Canales de Sodio/genética , Canales Iónicos Sensibles al Ácido , Secuencia de Aminoácidos , Animales , Fenómenos Biofísicos , Biofisica , Northern Blotting , Células COS , Mapeo Cromosómico , Clonación Molecular , Canales de Sodio Degenerina , Canales Epiteliales de Sodio , Hibridación Fluorescente in Situ , Canales Iónicos/genética , Hígado/citología , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Oocitos/metabolismo , ARN Mensajero/biosíntesis , ARN Mensajero/aislamiento & purificación , Ratas , Ratas Wistar , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Distribución Tisular , Xenopus
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda