Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
New Phytol ; 234(4): 1206-1219, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35181903

RESUMEN

Solar-induced Chl fluorescence (SIF) offers the potential to curb large uncertainties in the estimation of photosynthesis across biomes and climates, and at different spatiotemporal scales. However, it remains unclear how SIF should be used to mechanistically estimate photosynthesis. In this study, we built a quantitative framework for the estimation of photosynthesis, based on a mechanistic light reaction model with the Chla fluorescence of Photosystem II (SIFPSII ) as an input (MLR-SIF). Utilizing 29 C3 and C4 plant species that are representative of major plant biomes across the globe, we confirmed the validity of this framework at the leaf level. The MLR-SIF model is capable of accurately reproducing photosynthesis for all C3 and C4 species under diverse light, temperature, and CO2 conditions. We further tested the robustness of the MLR-SIF model using Monte Carlo simulations, and found that photosynthesis estimates were much less sensitive to parameter uncertainties relative to the conventional Farquhar, von Caemmerer, Berry (FvCB) model because of the additional independent information contained in SIFPSII . Once inferred from direct observables of SIF, SIFPSII provides 'parameter savings' to the MLR-SIF model, compared to the mechanistically equivalent FvCB model, and thus avoids the uncertainties arising as a result of imperfect model parameterization. Our findings set the stage for future efforts to employ SIF mechanistically to improve photosynthesis estimates across a variety of scales, functional groups, and environmental conditions.


Asunto(s)
Clorofila , Fotosíntesis , Ecosistema , Fluorescencia , Fotosíntesis/fisiología , Hojas de la Planta/fisiología
2.
New Phytol ; 223(3): 1179-1191, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30883811

RESUMEN

Recent progress in observing sun-induced Chl fluorescence (SIF) provides an unprecedented opportunity to advance photosynthesis research in natural environments. However, we still lack an analytical framework to guide SIF studies and integration with the well-developed active fluorescence approaches. Here, we derive a set of coupled fundamental equations to describe the dynamics of SIF and its relationship with C3 and C4 photosynthesis. These equations show that, although SIF is dynamically as complex as photosynthesis, the measured SIF simplifies photosynthetic modeling from the perspective of light reactions by integrating over the dynamic complexities of photosynthesis. Specifically, the measured SIF contains direct information about the actual electron transport from photosystem II to photosystem I, giving a quantifiable link between light and dark reactions. With much-reduced requirements on inputs and parameters, the light-reactions-centric, SIF-based biophysical model complements the traditional, dark-reactions-centric biochemical model of photosynthesis. The SIF-photosynthesis relationship, however, is nonlinear. This is because photosynthesis saturates at high light whereas SIF has a stronger tendency to keep increasing, as fluorescence quantum yield has a relatively muted sensitivity to light levels. Successful applications of the SIF-based model of photosynthesis will depend on a predictive understanding of several previously underexplored physiological and biophysical processes. Advances can be facilitated by coordinated efforts in plant physiology, remote sensing, and eddy covariance flux observations.


Asunto(s)
Fenómenos Biofísicos , Clorofila/metabolismo , Modelos Biológicos , Fotosíntesis , Luz Solar , Simulación por Computador , Fluorescencia , Procesos Fotoquímicos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda