Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
BMC Plant Biol ; 24(1): 479, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816690

RESUMEN

The taxonomic classification of Picea meyeri and P. mongolica has long been controversial. To investigate the genetic relatedness, evolutionary history, and population history dynamics of these species, genotyping-by-sequencing (GBS) technology was utilized to acquire whole-genome single nucleotide polymorphism (SNP) markers, which were subsequently used to assess population structure, population dynamics, and adaptive differentiation. Phylogenetic and population structural analyses at the genomic level indicated that although the ancestor of P. mongolica was a hybrid of P. meyeri and P. koraiensis, P. mongolica is an independent Picea species. Additionally, P. mongolica is more closely related to P. meyeri than to P. koraiensis, which is consistent with its geographic distribution. There were up to eight instances of interspecific and intraspecific gene flow between P. meyeri and P. mongolica. The P. meyeri and P. mongolica effective population sizes generally decreased, and Maxent modeling revealed that from the Last Glacial Maximum (LGM) to the present, their habitat areas decreased initially and then increased. However, under future climate scenarios, the habitat areas of both species were projected to decrease, especially under high-emission scenarios, which would place P. mongolica at risk of extinction and in urgent need of protection. Local adaptation has promoted differentiation between P. meyeri and P. mongolica. Genotype‒environment association analysis revealed 96,543 SNPs associated with environmental factors, mainly related to plant adaptations to moisture and temperature. Selective sweeps revealed that the selected genes among P. meyeri, P. mongolica and P. koraiensis are primarily associated in vascular plants with flowering, fruit development, and stress resistance. This research enhances our understanding of Picea species classification and provides a basis for future genetic improvement and species conservation efforts.


Asunto(s)
Genoma de Planta , Picea , Polimorfismo de Nucleótido Simple , Dinámica Poblacional , Picea/genética , Filogenia , Flujo Génico , Adaptación Fisiológica/genética , Ecosistema
2.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37108331

RESUMEN

To evaluate the effects of donor ages on growth and stress resistance of 6-year-old seedlings propagated from 5-, 2000-, and 3000-year-old Platycladus orientalis donors with grafting, cutting, and seed sowing, growth indicators and physiological and transcriptomic analyses were performed in 6-year-old seedlings in winter. Results showed that basal stem diameters and plant heights of seedlings of the three propagation methods decreased with the age of the donors, and the sown seedlings were the thickest and tallest. The contents of soluble sugar, chlorophyll, and free fatty acid in apical leaves of the three propagation methods were negatively correlated with donor ages in winter, while the opposite was true for flavonoid and total phenolic. The contents of flavonoid, total phenolic, and free fatty acid in cutting seedlings were highest in the seedlings propagated in the three methods in winter. KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis of differentially expressed genes showed phenylpropanoid biosynthesis and fatty acid metabolism pathways, and their expression levels were up-regulated in apical leaves from 6-year-old seedlings propagated from 3000-year-old P. orientalis donors. In addition, hub genes analysis presented that C4H, OMT1, CCR2, PAL, PRX52, ACP1, AtPDAT2, and FAD3 were up-regulated in cutting seedlings, and the gene expression levels decreased in seedlings propagated from 2000- and 3000-year-old donors. These findings demonstrate the resistance stability of cuttings of P. orientalis and provide insights into the regulatory mechanisms of seedlings of P. orientalis propagated from donors at different ages in different propagation methods against low-temperature stress.


Asunto(s)
Plantones , Thuja , Plantones/metabolismo , Ácidos Grasos no Esterificados/metabolismo , Perfilación de la Expresión Génica , Clorofila/metabolismo , Thuja/genética , Regulación de la Expresión Génica de las Plantas
3.
Int J Mol Sci ; 20(16)2019 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-31398898

RESUMEN

Platycladus orientalis (i.e., Chinese thuja) is famous for its lifespan spanning hundreds, and even thousands, of years. Most ancient P. orientalis populations are widely distributed in China, with accessible historical records, making them valuable genetic resources. In this study, the distribution pattern of ancient P. orientalis in China was analyzed based on 13 bioclimatic factors. Additionally, a specific-locus amplified fragment (SLAF) sequencing method was applied to detect single nucleotide polymorphisms (SNPs) in the genomes of 100 accessions from 13 populations. The resulting data revealed that the suitable areas for the distribution of ancient P. orientalis populations were accurately predicted with four main climatic factors. A total of 81,722 SNPs were identified from 461,867 SLAFs for 100 individuals, with an average sequencing depth of 10.11-fold and a Q30 value of 82.75%. The pair-wise genetic distance and genetic differentiation of 13 populations indicated that the BT-T population exhibited the largest divergence from the other populations. A neighbor-joining phylogenetic tree suggested the relationship between many individuals was inconsistent with the geographical location, possibly indicative of a history of transplantation and cultivation. All individuals were clustered into nine genotypes according to a structural analysis and the relationships between individuals were clarified in phylogenetic trees. This study highlights the importance of the de novo genome sequencing of ancient P. orientalis and may provide the basis for the conservation of P. orientalis genetic resources, the identification of supergene families, and the evaluation of related genetic resources.


Asunto(s)
Filogenia , Filogeografía , Sitios de Carácter Cuantitativo , Thuja/clasificación , Thuja/genética , China , Evolución Molecular , Genoma de Planta , Genómica/métodos , Geografía , Polimorfismo de Nucleótido Simple , Curva ROC , Análisis de Secuencia de ADN
4.
Planta ; 248(4): 963-979, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29982922

RESUMEN

MAIN CONCLUSION: Blocking α-ketoglutarate dehydrogenase results in up-regulation of γ-aminobutyric acid (GABA) shunt activity, and inhibits the growth of poplar adventitious roots (ARs), indicating that AR growth is closely associated with GABA shunt. γ-Aminobutyric acid (GABA) shunt starts from α-ketoglutarate in the tricarboxylic acid cycle, which is thought to represent the cross road between carbon and nitrogen metabolism. Previous studies (Araújo et al. 2012b, Plant Cell 24: 2328-2351) have shown that blocking α-ketoglutarate dehydrogenase (α-KGDH) affects the GABA shunt activity, and inhibits growth. However, its effects on the growth of adventitious roots (ARs) are unclear. In this study, the growth of ARs in tissue-cultured 84K poplar (Populus alba × Populus glandulosa cv. '84K') was significantly inhibited when succinyl phosphate (SP), a specific inhibitor of α-KGDH, was supplied. The inhibition of ARs was associated with significant changes in the levels of soluble sugars, organic acids, and amino acids, and was coupled with the up-regulation of the GABA shunt activity at the transcriptional and translational levels. Exogenous GABA also inhibited AR growth following the increase of the endogenous GABA level. Transcriptomic analyses further showed that genes related to cell wall carbon metabolism and phytohormone (indoleacetic acid, ABA, and ethylene) signaling were affected by the changes of GABA shunt activity, resulting from the α-KGDH inhibition. Thus, our study indicates that the inhibition of poplar AR growth by blocking α-KGDH is closely associated with GABA shunt, which would benefit a better understanding of GABA's roles in plant development and stress response.


Asunto(s)
Carbono/metabolismo , Complejo Cetoglutarato Deshidrogenasa/antagonistas & inhibidores , Populus/enzimología , Transducción de Señal/efectos de los fármacos , Succinatos/farmacología , Ácido gamma-Aminobutírico/metabolismo , Aminoácidos/metabolismo , Pared Celular/metabolismo , Perfilación de la Expresión Génica , Complejo Cetoglutarato Deshidrogenasa/genética , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/antagonistas & inhibidores , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/enzimología , Raíces de Plantas/crecimiento & desarrollo , Populus/efectos de los fármacos , Populus/crecimiento & desarrollo , Regulación hacia Arriba , Ácido gamma-Aminobutírico/genética , Ácido gamma-Aminobutírico/farmacología
5.
Planta ; 248(3): 675-690, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29948123

RESUMEN

MAIN CONCLUSION: γ-Aminobutyric acid (GABA) affected ABA and ethylene metabolic genes and signal components in salt-treated poplar, indicating its potential role in signal pathways of ABA and ethylene during salt stress. GABA is a small signalling molecule that accumulates rapidly in plants exposed to various stresses. However, the relationship between GABA and other signalling molecules, such as hormones, remains unclear. Here, in the poplar woody plant under 200-mM NaCl conditions, the application of low (0.25 mM) and high (10 mM) exogenous GABA, compared to 0 mM, affected the accumulation of hydrogen peroxide and hormones, including ABA and ethylene, in different manners. Transcriptomic analysis demonstrated that 1025 differentially expressed genes (DEGs; |log2Ratio| ≥ 1.5) were widely affected by exogenous GABA under salt stress. A clustering analysis revealed that GABA could rescue or promote the effects of salt stress on gene expression. Among them, 146 genes involved in six hormone-signalling pathways were enriched, including 22 ABA- and 50 ethylene-related genes. Quantitative expression of selected genes involved in hormone-related pathways showed that ABA metabolic genes (ABAG, ABAH2, and ABAH4), ethylene biosynthetic genes (ACO1, ACO2, ACO5, ACOH1, ACS1, and ACS7) and receptor genes (PYL1, PYL2, PYL4, and PYL6) were regulated by exogenous GABA, even at a 0.1 mM level. The production of ABA was negatively correlated with ABAH expression levels at different GABA concentrations. The increase of endogenous GABA, resulting from inhibitor (succinyl phosphonate) of α-ketoglutarate dehydrogenase, affected the PYLs levels. Thus, GABA may be involved in ABA- and ethylene-signalling pathways. Our data provide a better understanding of GABA's roles in the plant responses to environmental stresses.


Asunto(s)
Ácido Abscísico/metabolismo , Etilenos/metabolismo , Genes de Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Populus/metabolismo , Tolerancia a la Sal/genética , Transducción de Señal , Ácido gamma-Aminobutírico/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Peróxido de Hidrógeno/metabolismo , Populus/genética , Transcriptoma
6.
Plant Physiol Biochem ; 211: 108724, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38744084

RESUMEN

Heavy metal pollution is a global environmental problem, and Quercus variabilis has a stronger tolerance to Cd stress than do other species. We aimed to explore the physiological response and molecular mechanisms of Q. variabilis to Cd stress. In this study, the antioxidant enzyme activities of leaves were determined, while the photosynthetic parameters of leaves were measured using Handy PEA, and ion fluxes and DEGs in the roots were investigated using noninvasive microtest technology (NMT) and RNA sequencing techniques, respectively. Cd stress at different concentrations and for different durations affected the uptake patterns of Cd2+ and H+ by Q. variabilis and affected the photosynthetic efficiency of leaves. Moreover, there was a positive relationship between antioxidant enzyme (CAT and POD) activity and Cd concentration. Transcriptome analysis revealed that many genes, including genes related to the cell wall, glutathione metabolism, ion uptake and transport, were significantly upregulated in response to cadmium stress in Q. variabilis roots. WGCNA showed that these DEGs could be divided into eight modules. The turquoise and blue modules exhibited the strongest correlations, and the most significantly enriched pathways were the phytohormone signaling pathway and the phenylpropanoid biosynthesis pathway, respectively. These findings suggest that Q. variabilis can bolster plant tolerance by modulating signal transduction and increasing the synthesis of compounds, such as lignin, under Cd stress. In summary, Q. variabilis can adapt to Cd stress by increasing the activity of antioxidant enzymes, and regulating the fluxes of Cd2+ and H+ ions and the expression of Cd stress-related genes.


Asunto(s)
Cadmio , Regulación de la Expresión Génica de las Plantas , Quercus , Estrés Fisiológico , Quercus/metabolismo , Quercus/efectos de los fármacos , Quercus/genética , Cadmio/toxicidad , Cadmio/metabolismo , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Fotosíntesis/efectos de los fármacos , Antioxidantes/metabolismo
7.
Ecol Evol ; 14(8): e70126, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39114168

RESUMEN

To study the interspecific differentiation characteristics of species originating from recent radiation, the genotyping-by-sequencing (GBS) technique was used to explore the kinship, population structure, gene flow, genetic variability, genotype-environment association and selective sweeps of Picea asperata complex with similar phenotypes from a genome-wide perspective. The following results were obtained: 14 populations of P. asperata complex could be divided into 5 clades; P. wilsonii and P. neoveitchii diverged earlier and were more distantly related to the remaining 6 spruce species. Various geological events have promoted the species differentiation of P. asperata complex. There were four instances of gene flow among P. koraiensis, P. meyeri, P. asperata, P. crassifolia and P. mongolica. The population of P. mongolica had the highest level of nucleotide diversity, and P. neoveitchii may have experienced a bottleneck recently. Genotype-environment association found that a total of 20,808 genes were related to the environmental variables, which enhanced the adaptability of spruce in different environments. Genes that were selectively swept in the P. asperata complex were primarily associated with plant stress resistance. Among them were some genes involved in plant growth and development, heat stress, circadian rhythms and flowering. In addition to the commonly selected genes, different spruce species also displayed unique genes subjected to selective sweeps that improved their adaptability to different habitats. Understanding the interspecific gene flow and adaptive evolution of Picea species is beneficial to further understanding the species relationships of spruce and can provide a basis for studying spruce introgression and functional genomics.

8.
Int J Mol Sci ; 14(7): 14860-71, 2013 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-23863693

RESUMEN

Thuja sutchuenensis Franch. is a critically endangered plant endemic to the North-East Chongqing, China. Genetic variation was studied to assess the distribution of genetic diversity within and among seven populations from the single remnant locations, using inter-simple sequence repeat (ISSR) markers. A total of 15 primers generated 310 well defined bands, with an average of 20.7 bands per primer. The seven populations revealed a relatively high level of genetic diversity in the species. The percentage of polymorphic bands, Nei's gene diversity and Shannon's information index at the population and species level were 76.1%, 0.155, 0.252 and 100%, 0.165, 0.295, respectively. A low level of genetic differentiation among populations (G(ST) = 0.102), in line with the results of Analyses of Molecular Variance (AMOVA), and a high level of gene flow (N(m) = 4.407) were observed. Both the Unweighted Pair Group Method with Arithmatic Mean (UPGMA) cluster analysis and Principal Coordinates Analysis (PCoA) supported the grouping of all seven populations into two groups. In addition, Mantel test revealed no significant correlation between genetic and geographical distances (r = 0.329, p = 0.100). The low genetic differentiation among populations implies that the conservation efforts should aim to preserve all the extant populations of this endangered species.


Asunto(s)
Variación Genética/genética , Thuja/genética , Secuencia de Bases , Análisis por Conglomerados , ADN de Plantas/metabolismo , Repeticiones de Microsatélite , Análisis de Componente Principal , Thuja/metabolismo
9.
Plants (Basel) ; 12(9)2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37176812

RESUMEN

The effects of tree age on the growth of cutting seedlings propagated from ancient trees have been an important issue in plant breeding and cultivation. In order to understand seedling growth and stress resistance stability, phenotypic measurements, physiological assays, and high-throughput transcriptome sequencing were performed on sown seedlings propagated from 5-year-old donors and cutting seedlings propagated from 5-, 300-, and 700-year-old Platycladus orientalis donors. In this study, the growth of cutting seedlings propagated from ancient trees was significantly slower; the soluble sugar and chlorophyll contents gradually decreased with the increase in the age of donors, and the flavonoid and total phenolic contents of sown seedlings were higher than those of cutting seedlings. Enrichment analysis of differential genes showed that plant hormone signal transduction, the plant-pathogen interaction, and the flavone and flavonol biosynthesis pathways were significantly up-regulated with the increasing age of cutting seedlings propagated from 300- and 700-year-old donors. A total of 104,764 differentially expressed genes were calculated using weighted gene co-expression network analysis, and 8 gene modules were obtained. Further, 10 hub genes in the blue module were identified, which revealed that the expression levels of JAZ, FLS, RPM1/RPS3, CML, and RPS2 increased with the increase in tree age. The results demonstrated that the age of the donors seriously affected the growth of P. orientalis cutting seedlings and that cutting propagation can preserve the resistance of ancient trees. The results of this study provide important insights into the effects of age on asexually propagated seedlings, reveal potential molecular mechanisms, and contribute to an improvement in the level of breeding and conservation of ancient germplasm resources of P. orientalis trees.

10.
Plant Sci ; 337: 111874, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37742724

RESUMEN

Quercus variabilis is a deciduous woody species with high ecological and economic value, and is a major source of cork in East Asia. Cork from thick softwood sheets have higher commercial value than those from thin sheets. It is extremely difficult to genetically improve Q. variabilis to produce high quality softwood due to the lack of genomic information. Here, we present a high-quality chromosomal genome assembly for Q. variabilis with length of 791,89 Mb and 54,606 predicted genes. Comparative analysis of protein sequences of Q. variabilis with 11 other species revealed that specific and expanded gene families were significantly enriched in the "fatty acid biosynthesis" pathway in Q. variabilis, which may contribute to the formation of its unique cork. Based on weighted correlation network analysis of time-course (i.e., five important developmental ages) gene expression data in thick-cork versus thin-cork genotypes of Q. variabilis, we identified one co-expression gene module associated with the thick-cork trait. Within this co-expression gene module, 10 hub genes were associated with suberin biosynthesis. Furthermore, we identified a total of 198 suberin biosynthesis-related new candidate genes that were up-regulated in trees with a thick cork layer relative to those with a thin cork layer. Also, we found that some genes related to cell expansion and cell division were highly expressed in trees with a thick cork layer. Collectively, our results revealed that two metabolic pathways (i.e., suberin biosynthesis, fatty acid biosynthesis), along with other genes involved in cell expansion, cell division, and transcriptional regulation, were associated with the thick-cork trait in Q. variabilis, providing insights into the molecular basis of cork development and knowledge for informing genetic improvement of cork thickness in Q. variabilis and closely related species.

11.
Front Plant Sci ; 14: 1192371, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37496863

RESUMEN

Platycladus orientalis, a common horticultural tree species, has an extremely long life span and forms a graceful canopy. Its branches, leaves, and cones have been used in traditional Chinese medicine. However, difficulty in rooting is the main limiting factor for the conservation of germplasm resources. This study shows that the rooting rates and root numbers of cuttings were significantly reduced in ancient P. orientalis donors compared to 5-year-old P. orientalis donors. The contents of differentially accumulated metabolites (DAMs) in phenylpropanoid (caffeic acid and coniferyl alcohol) and flavonoid biosynthesis (cinnamoyl-CoA and isoliquiritigenin) pathways increased significantly in cuttings propagated from ancient P. orientalis donors compared to 5-year-old P. orientalis donors during adventitious root (AR) formation. These DAMs may prevent the ancient P. orientalis cuttings from rooting, and gradual lignification of callus was one of the main reasons for the failed rooting of ancient P. orientalis cuttings. The rooting rates of ancient P. orientalis cuttings were improved by wounding the callus to identify wounding-induced rooting-promoting metabolites. After wounding, the contents of DAMs in zeatin (5'-methylthioadenosine, cis-zeatin-O-glucoside, and adenine) and aminoacyl-tRNA biosynthesis (l-glutamine, l-histidine, l-isoleucine, l-leucine, and l-arginine) pathways increased, which might promote cell division and provided energy for the rooting process. The findings of our study suggest that breaking down the lignification of callus via wounding can eventually improve the rooting rates of ancient P. orientalis cuttings, which provides a new solution for cuttings of other difficult-to-root horticultural and woody plants.

12.
Plants (Basel) ; 12(6)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36986954

RESUMEN

Picea koraiensis is major silvicultural and timber species in northeast China, and its distribution area is an important transition zone for genus spruce migration. The degree of intraspecific differentiation of P. koraiensis is high, but population structure and differentiation mechanisms are not clear. In this study, 523,761 single nucleotide polymorphisms (SNPs) were identified in 113 individuals from 9 populations of P. koraiensis by genotyping-by-sequencing (GBS). Population genomic analysis showed that P. koraiensis was divided into three geoclimatic regions: Great Khingan Mountains climatic region, Lesser Khingan Mountains climatic region, and Changbai Mountain climatic region. Mengkeshan (MKS) population on the northern edge of the distribution area and Wuyiling (WYL) population located in the mining area are two highly differentiated groups. Selective sweep analysis showed that MKS and WYL populations had 645 and 1126 selected genes, respectively. Genes selected in the MKS population were associated with flowering and photomorphogenesis, cellular response to water deficit, and glycerophospholipid metabolism; genes selected in the WYL population were associated with metal ion transport, biosynthesis of macromolecules, and DNA repair. Climatic factors and heavy metal stress drives divergence in MKS and WYL populations, respectively. Our findings provide insights into adaptive divergence mechanisms in Picea and will contribute to molecular breeding studies.

13.
Plants (Basel) ; 11(21)2022 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-36365446

RESUMEN

Genome-wide single nucleotide polymorphism (SNP) markers were obtained by genotyping-by-sequencing (GBS) technology to study the genetic relationships, population structure, gene flow and selective sweeps during species differentiation of Picea wilsonii, P. neoveitchii and P. likiangensis from a genome-wide perspective. We used P. jezoensis and P. pungens as outgroups, and three evolutionary branches were obtained: P. likiangensis was located on one branch, two P. wilsonii populations were grouped onto a second branch, and two P. neoveitchii populations were grouped onto a third branch. The relationship of P. wilsonii with P. likiangensis was closer than that with P. neoveitchii. ABBA-BABA analysis revealed that the gene flow between P. neoveitchii and P. wilsonii was greater than that between P. neoveitchii and P. likiangensis. Compared with the background population of P. neoveitchii, the genes that were selected in the P. wilsonii population were mainly related to plant stress resistance, stomatal regulation, plant morphology and flowering. The genes selected in the P. likiangensis population were mainly related to plant stress resistance, leaf morphology and flowering. Selective sweeps were beneficial for improving the adaptability of spruce species to different habitats as well as to accelerate species differentiation. The frequent gene flow between spruce species makes their evolutionary relationships complicated. Insight into gene flow and selection pressure in spruce species will help us further understand their phylogenetic relationships and provide a scientific basis for their introduction, domestication and genetic improvement.

14.
J Agric Food Chem ; 66(11): 3019-3029, 2018 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-29490456

RESUMEN

Gnetum parvifolium is a rich source of materials for traditional medicines, food, and oil, but little is known about the mechanism underlying its seed dormancy and germination. In this study, we analyzed the proteome-level changes in its seeds during germination using isobaric tags for relative and absolute quantitation. In total, 1,040 differentially expressed proteins were identified, and cluster analysis revealed the distinct time points during which signal transduction and oxidation-reduction activity changed. Gene Ontology analysis showed that "carbohydrate metabolic process" and "response to oxidative stress" were the main enriched terms. Proteins associated with starch degradation and antioxidant enzymes were important for dormancy-release, while proteins associated with energy metabolism and protein synthesis were up-regulated during germination. Moreover, protein-interaction networks were mainly associated with heat-shock proteins. Furthermore, in accord with changes in the energy metabolism- and antioxidant-related proteins, indole-3-acetic acid, Peroxidase, and soluble sugar content increased, and the starch content decreased in almost all six stages of dormancy and germination analyzed (S1-S6). The activity of superoxide dismutase, abscisic acid, and malondialdehyde content increased in the dormancy stages (S1-S3) and then decreased in the germination stages (S4-S6). Our results provide new insights into G. parvifolium seed dormancy and germination at the proteome and physiological levels, with implications for improving seed propagation.


Asunto(s)
Gnetum/fisiología , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Semillas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Germinación , Gnetum/química , Gnetum/genética , Gnetum/crecimiento & desarrollo , Estrés Oxidativo , Latencia en las Plantas , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteoma/química , Proteoma/genética , Proteómica , Semillas/química , Semillas/genética , Semillas/fisiología , Estrés Fisiológico
15.
Sci Rep ; 7(1): 2607, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28572621

RESUMEN

The Na+/H+ antiporters (NHXs) are secondary ion transporters to exchange H+ and transfer the Na+ or K+ across membrane, they play crucial roles during plant development and stress responses. To gain insight into the functional divergence of NHX genes in poplar, eight PtNHX were identified from Populus trichocarpa genome. PtNHXs containing 10 transmembrane helices (TMH) and a hydrophilic C-terminal domain, the TMH compose a hollow cylinder to provide the channel for Na+ and H+ transport. The expression patterns and cis-acting elements showed that all the PtNHXs were response to single or multiple stresses including drought, heat, cold, salinity, MV, and ABA. Both the co-expression network and protein-protein interaction network of PtNHXs implying their functional divergence. Interestingly, although PtNHX7 and PtNHX8 were generated by whole genome duplication event, they showed significant differences in expression pattern, protein structure, co-expressed genes, and interacted proteins. Only PtNHX7 interact with CBL and CIPK, indicating PtNHX7 is the primary NHX involved in CBL-CIPK pathway during salt stress responses. Natural variation analysis based on 549 P. trichocarpa individuals indicated the frequency of SNPs in PtNHX7 was significantly higher than other PtNHXs. Our findings provide new insights into the functional divergence of NHX genes in poplar.


Asunto(s)
Populus/genética , Intercambiadores de Sodio-Hidrógeno/genética , Estrés Fisiológico/fisiología , Evolución Molecular , Duplicación de Gen , Regulación de la Expresión Génica , Frecuencia de los Genes , Especiación Genética , Transporte Iónico , Polimorfismo de Nucleótido Simple , Potasio/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas/genética , Sodio/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Transcriptoma
16.
PeerJ ; 5: e3439, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28626614

RESUMEN

BACKGROUND: Glutamate decarboxylase (GAD), as a key enzyme in the γ -aminobutyric acid (GABA) shunt, catalyzes the decarboxylation of L-glutamate to form GABA. This pathway has attracted much interest because of its roles in carbon and nitrogen metabolism, stress responses, and signaling in higher plants. The aim of this study was to isolate and characterize genes encoding GADs from Caragana intermedia, an important nitrogen-fixing leguminous shrub. METHODS: Two full-length cDNAs encoding GADs (designated as CiGAD1 and CiGAD2) were isolated and characterized. Multiple alignment and phylogenetic analyses were conducted to evaluate their structures and identities to each other and to homologs in other plants. Tissue expression analyses were conducted to evaluate their transcriptional responses to stress (NaCl, ZnSO4, CdCl2, high/low temperature, and dehydration) and exogenous abscisic acid. RESULTS: The CiGADs contained the conserved PLP domain and calmodulin (CaM)-binding domain in the C-terminal region. The phylogenetic analysis showed that they were more closely related to the GADs of soybean, another legume, than to GADs of other model plants. According to Southern blotting analysis, CiGAD1 had one copy and CiGAD2-related genes were present as two copies in C. intermedia. In the tissue expression analyses, there were much higher transcript levels of CiGAD2 than CiGAD1 in bark, suggesting that CiGAD2 might play a role in secondary growth of woody plants. Several stress treatments (NaCl, ZnSO4, CdCl2, high/low temperature, and dehydration) significantly increased the transcript levels of both CiGADs, except for CiGAD2 under Cd stress. The CiGAD1 transcript levels strongly increased in response to Zn stress (74.3-fold increase in roots) and heat stress (218.1-fold increase in leaves). The transcript levels of both CiGADs significantly increased as GABA accumulated during a 24-h salt treatment. Abscisic acid was involved in regulating the expression of these two CiGADs under salt stress. DISCUSSION: This study showed that two CiGADs cloned from C. intermedia are closely related to homologs in another legume, soybean. CiGAD2 expression was much higher than that of CiGAD1 in bark, indicating that CiGAD2 might participate in the process of secondary growth in woody plants. Multiple stresses, interestingly, showed that Zn and heat stresses had the strongest effects on CiGAD1 expression, suggesting that CiGAD1 plays important roles in the responses to Zn and heat stresses. Additionally, these two genes might be involved in ABA dependent pathway during stress. This result provides important information about the role of GADs in woody plants' responses to environmental stresses.

17.
Front Plant Sci ; 7: 174, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26973657

RESUMEN

Gnetum is a small, unique group of Gnetophyta with a controversial phylogenetic position. Gnetum parvifolium is an important Chinese traditional medicinal plant, which is rich in bioactive compounds such as flavonoids and stilbenoids. These compounds provide significant medicinal effects, mostly as antioxidant, anticancer, and antibacterial agents. However, the mechanisms involved in the biosynthesis and regulation of these compounds in G. parvifolium are still unknown. In this study, we found that flavonoids and stilbene compounds accumulated at different levels in various tissues of G. parvifolium. We further obtained and analyzed massive sequence information from pooled samples of G. parvifolium by transcriptome sequencing, which generated 94,816 unigenes with an average length of 724 bp. Functional annotation of all these unigenes revealed that many of them were associated with several important secondary metabolism pathways including flavonoids and stilbenoids. In particular, several candidate unigenes (PAL-, C4H-, 4CL-, and STS-like genes) involved in stilbenoids biosynthesis were highly expressed in leaves and mature fruits. Furthermore, high temperature and UV-C strongly induced the expression of these genes and enhanced stilbene production (i.e., resveratrol and piceatannol) in leaves of young seedlings. Our present transcriptomic and biochemical data on secondary metabolites in G. parvifolium should encourage further investigation on evolution, ecology, functional genomics, and breeding of this plant with strong pharmaceutical potential.

18.
Front Plant Sci ; 6: 678, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26442002

RESUMEN

Populus tomentosa (Chinese white poplar) is well adapted to various extreme environments, and is considered an important species to study the effects of salinity stress on poplar trees. To decipher the mechanism of poplar's rapid response to short-term salinity stress, we firstly detected the changes in H2O2 and hormone, and then profiled the gene expression pattern of 10-week-old seedling roots treated with 200 mM NaCl for 0, 6, 12, and 24 h (h) by RNA-seq on the Illumina-Solexa platform. Physiological determination showed that the significant increase in H2O2 began at 6 h, while that in hormone ABA was at 24 h, under salt stress. Compared with controls (0 h), 3991, 4603, and 4903 genes were up regulated, and 1408, 2206, and 3461 genes were down regulated (adjusted P ≤ 0.05 and |log2Ratio|≥1) at 6, 12, and 24 h time points, respectively. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation revealed that the differentially expressed genes (DEGs) were highly enriched in hormone- and reactive oxygen species-related biological processes, including "response to oxidative stress or abiotic stimulus," "peroxidase activity," "regulation of transcription," "hormone synthetic and metabolic process," "hormone signal transduction," "antioxidant activity," and "transcription factor activity." Moreover, K-means clustering demonstrated that DEGs (total RPKM value>12 from four time points) could be categorized into four kinds of expression trends: quick up/down over 6 or 12 h, and slow up/down over 24 h. Of these, DEGs involved in H2O2- and hormone- producing and signal-related genes were further enriched in this analysis, which indicated that the two kinds of small molecules, hormones and H2O2, play pivotal roles in the short-term salt stress response in poplar. This study provides a basis for future studies of the molecular adaptation of poplar and other tree species to salinity stress.

19.
Environ Sci Pollut Res Int ; 22(15): 11456-66, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25813633

RESUMEN

Antimony (Sb) pollution has become a pressing environmental problem in recent years. Trees have been proven to have great potential for the feasible phytomanagement; however, little is known about Sb retention and tolerance in trees. The Chinese cork oak (Quercus variabilis Bl.) is known to be capable of growth in soils containing high concentrations of Sb. This study explored in detail the retention and acclimation of Q. variabilis under moderate and high external Sb levels. Results revealed that Q. variabilis could tolerate and accumulate high Sb (1623.39 mg kg(-1) DW) in roots. Dynamics of Sb retention in leaves, stems, and roots of Q. variabilis were different. Leaf Sb remained at a certain level for several weeks, while in roots and stems, Sb concentrations continued to increase. Sb damaged tree's PSII reaction cores but elicited defense mechanism at the donor side of PSII. It affected the electron transport flow after QA (-) more strongly than the oxygen-evolving complex and light-harvesting pigment-protein complex II. Sb also decreased leaf chlorophyll concentrations and therefore inhibited plant growth. During acclimation to Sb toxicity, Sb concentrations in leaves, stems, and roots decreased, with photosynthetic activity and pigments recovering to normal levels by the end of the experiment. These findings suggest that Sb tolerance in Q. variabilis is inducible. Acclimation seems to be related to homeostasis of Sb in plants. Results of this study can provide useful information for trees breeding and selection of Sb phytomanagement strategies, exploiting the established ability of Q. variabilis to transport, delocalize in the leaves, and tolerate Sb pollutions.


Asunto(s)
Antimonio/toxicidad , Quercus/metabolismo , Contaminantes del Suelo/toxicidad , Aclimatación , Clorofila/metabolismo , Fotosíntesis , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo
20.
Environ Pollut ; 201: 150-60, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25800729

RESUMEN

To explore the molecular basis of Sb tolerance mechanism in plant, a comparative proteomic analysis of both roots and leaves in Miscanthus sinensis has been conducted in combination with physiological and biochemical analyses. M. sinensis seedlings were exposed to different doses of Sb, and both roots and leaves were collected after 3 days of treatment. Two-dimensional gel electrophoresis (2-DE) and image analyses found that 29 protein spots showed 1.5-fold change in abundance in leaves and 19 spots in roots, of which 31 were identified by MALDI-TOF-MS and MALDI-TOF-TOF-MS. Proteins involved in antioxidant defense and stress response generally increased their expression all over the Sb treatments. In addition, proteins relative to transcription, signal transduction, energy metabolism and cell division and cell structure showed a variable expression pattern over Sb concentrations. Overall these findings provide new insights into the probable survival mechanisms by which M. sinensis could be adapting to Sb phytotoxicity.


Asunto(s)
Antimonio/farmacología , Hojas de la Planta/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Poaceae/efectos de los fármacos , Proteómica/métodos , Estrés Fisiológico , Electroforesis en Gel Bidimensional , Exposición a Riesgos Ambientales/análisis , Proteínas de Plantas/metabolismo , Plantones/efectos de los fármacos , Transducción de Señal/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda